Applicability of the method of nets and the method of lines to the solution of a class of problems of optimal control theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 4, pp. 798-805
Voir la notice de l'article provenant de la source Math-Net.Ru
The control of elliptic systems with solutions in class $W_2^2$ is considered. By means of the operators of exact difference schemes, schemes are constructed for which rate of convergence estimates of order $O(|h|^2)$ are established. Similar results are obtained for schemes of the method of straight lines, for the control of parabolic systems.
@article{ZVMMF_1983_23_4_a2,
author = {V. L. Burkovskaya and V. L. Makarov},
title = {Applicability of the method of nets and the method of lines to the solution of a class of problems of optimal control theory},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {798--805},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a2/}
}
TY - JOUR AU - V. L. Burkovskaya AU - V. L. Makarov TI - Applicability of the method of nets and the method of lines to the solution of a class of problems of optimal control theory JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 798 EP - 805 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a2/ LA - ru ID - ZVMMF_1983_23_4_a2 ER -
%0 Journal Article %A V. L. Burkovskaya %A V. L. Makarov %T Applicability of the method of nets and the method of lines to the solution of a class of problems of optimal control theory %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1983 %P 798-805 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a2/ %G ru %F ZVMMF_1983_23_4_a2
V. L. Burkovskaya; V. L. Makarov. Applicability of the method of nets and the method of lines to the solution of a class of problems of optimal control theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 4, pp. 798-805. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a2/