Iterative solution of some schemes of the finite element method for elliptic equations of order $2n$, $n\ge1$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 4, pp. 881-891

Voir la notice de l'article provenant de la source Math-Net.Ru

Five-point (in the two-dimehsional case) mesh operators A are constructed, equivalent in spectrum to mesh operators of schemes of the finite element method, for solving elliptic equations of order $2n$, $n\ge1$. An efficient direct method is also developed for solving systems of algebraic equations $Au=f$ with an estimate $O(h^{-2}\ln h^{-1})$ of the number of arithmetic operations, where $h$ is the mesh parameter.
@article{ZVMMF_1983_23_4_a10,
     author = {U. Langer},
     title = {Iterative solution of some schemes of the finite element method for elliptic equations of order $2n$, $n\ge1$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {881--891},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a10/}
}
TY  - JOUR
AU  - U. Langer
TI  - Iterative solution of some schemes of the finite element method for elliptic equations of order $2n$, $n\ge1$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1983
SP  - 881
EP  - 891
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a10/
LA  - ru
ID  - ZVMMF_1983_23_4_a10
ER  - 
%0 Journal Article
%A U. Langer
%T Iterative solution of some schemes of the finite element method for elliptic equations of order $2n$, $n\ge1$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1983
%P 881-891
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a10/
%G ru
%F ZVMMF_1983_23_4_a10
U. Langer. Iterative solution of some schemes of the finite element method for elliptic equations of order $2n$, $n\ge1$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 4, pp. 881-891. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a10/