Approximate models of random processes and fields
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 3, pp. 558-566

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of models of stochastic processes and fields with a convex correlation function and a given one-dimensional distribution is constructed on the basis of stationary point flows. It is sometimes possible to improve successively the multi-dimensional distributions by using the summability of the realizations, the convergence being weak for non-negative processes. The convergence of approximate models of Gaussian fields, obtained by special randomization of the spectral resolution, is studied. The models can be realized quite easily on a computer.
@article{ZVMMF_1983_23_3_a4,
     author = {G. A. Mikhailov},
     title = {Approximate models of random processes and fields},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {558--566},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a4/}
}
TY  - JOUR
AU  - G. A. Mikhailov
TI  - Approximate models of random processes and fields
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1983
SP  - 558
EP  - 566
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a4/
LA  - ru
ID  - ZVMMF_1983_23_3_a4
ER  - 
%0 Journal Article
%A G. A. Mikhailov
%T Approximate models of random processes and fields
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1983
%P 558-566
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a4/
%G ru
%F ZVMMF_1983_23_3_a4
G. A. Mikhailov. Approximate models of random processes and fields. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 3, pp. 558-566. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a4/