Lower bound for the number of inequalities representing a monotone Boolean function of $n$ variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 3, pp. 754-756

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that there is a monotonic Boolean function whose representation by a system of linear inequalities with $n$ Boolean variables requires not less than $$\binom{n}{[n/2]}n^{-1}$$ inequalities.
@article{ZVMMF_1983_23_3_a25,
     author = {Yu. A. Zuev and V. N. Trishin},
     title = {Lower bound for the number of inequalities representing a monotone {Boolean} function of $n$~variables},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {754--756},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a25/}
}
TY  - JOUR
AU  - Yu. A. Zuev
AU  - V. N. Trishin
TI  - Lower bound for the number of inequalities representing a monotone Boolean function of $n$ variables
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1983
SP  - 754
EP  - 756
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a25/
LA  - ru
ID  - ZVMMF_1983_23_3_a25
ER  - 
%0 Journal Article
%A Yu. A. Zuev
%A V. N. Trishin
%T Lower bound for the number of inequalities representing a monotone Boolean function of $n$ variables
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1983
%P 754-756
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a25/
%G ru
%F ZVMMF_1983_23_3_a25
Yu. A. Zuev; V. N. Trishin. Lower bound for the number of inequalities representing a monotone Boolean function of $n$ variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 3, pp. 754-756. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a25/