An efficient method for the approximate solution of the Laplace difference equation on rectangular domains
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 3, pp. 660-673
Voir la notice de l'article provenant de la source Math-Net.Ru
An approximate method of solving Laplace's difference equation in a rectangle with uniform accuracy $O(h^p)$ is proposed. Five-point and nine-point Laplace difference operators, boundary conditions of the first and second kinds, and the problem of the contact between two media are considered. The method can be generalized to the three-dimensional case. To find an approximate solution, $O(1)$ arithmetic operations are required for each node of the net.
@article{ZVMMF_1983_23_3_a13,
author = {S. E. Romanova},
title = {An efficient method for the approximate solution of the {Laplace} difference equation on rectangular domains},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {660--673},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a13/}
}
TY - JOUR AU - S. E. Romanova TI - An efficient method for the approximate solution of the Laplace difference equation on rectangular domains JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 660 EP - 673 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a13/ LA - ru ID - ZVMMF_1983_23_3_a13 ER -
%0 Journal Article %A S. E. Romanova %T An efficient method for the approximate solution of the Laplace difference equation on rectangular domains %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1983 %P 660-673 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a13/ %G ru %F ZVMMF_1983_23_3_a13
S. E. Romanova. An efficient method for the approximate solution of the Laplace difference equation on rectangular domains. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 3, pp. 660-673. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a13/