Numerical solution of an equation with a small parameter multiplying the highest derivative
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 3, pp. 620-628

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of monotonic difference schemes on a non-uniform mesh is proposed for solving a second-order ordinary differential equation with a small parameter in the highest derivative. It is shown that, under certain conditions on the coefficients of the equation, the difference scheme is ill-posed. Two methods are given for solving an ill-posed difference problem, which are stable to rounding errors.
@article{ZVMMF_1983_23_3_a10,
     author = {A. I. Zadorin and V. N. Ignat'ev},
     title = {Numerical solution of an equation with a small parameter multiplying the highest derivative},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {620--628},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a10/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - V. N. Ignat'ev
TI  - Numerical solution of an equation with a small parameter multiplying the highest derivative
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1983
SP  - 620
EP  - 628
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a10/
LA  - ru
ID  - ZVMMF_1983_23_3_a10
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A V. N. Ignat'ev
%T Numerical solution of an equation with a small parameter multiplying the highest derivative
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1983
%P 620-628
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a10/
%G ru
%F ZVMMF_1983_23_3_a10
A. I. Zadorin; V. N. Ignat'ev. Numerical solution of an equation with a small parameter multiplying the highest derivative. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 3, pp. 620-628. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_3_a10/