Local interpolation curve with a prescribed degree of smoothness which preserves the constant sign of curvature
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 290-300
Voir la notice de l'article provenant de la source Math-Net.Ru
A local interpolation method is described, whereby the curve is kept monotonic and its curvature sign fixed, provided that the initial points enable such a curve to be constructed. The algorithm allows the straight parts on the curve to be separated and provides continuity of the derivatives of a given degree. It is shown that, if the function $f^{(q)}(x)$ is continuous in the interval $[a,b]$, $q=0,1,2$, then the interpolation function of the appropriate degree of smoothness converges to the function $f(x)$ on a sequence of meshesat least at the rat $\|\Delta\|^q$, where $\|\Delta\|=\max_i|\Delta x_i|$.
@article{ZVMMF_1983_23_2_a4,
author = {I. A. Rumyantsev},
title = {Local interpolation curve with a prescribed degree of smoothness which preserves the constant sign of curvature},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {290--300},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a4/}
}
TY - JOUR AU - I. A. Rumyantsev TI - Local interpolation curve with a prescribed degree of smoothness which preserves the constant sign of curvature JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 290 EP - 300 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a4/ LA - ru ID - ZVMMF_1983_23_2_a4 ER -
%0 Journal Article %A I. A. Rumyantsev %T Local interpolation curve with a prescribed degree of smoothness which preserves the constant sign of curvature %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1983 %P 290-300 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a4/ %G ru %F ZVMMF_1983_23_2_a4
I. A. Rumyantsev. Local interpolation curve with a prescribed degree of smoothness which preserves the constant sign of curvature. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 290-300. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a4/