Realizations of an approximate random quadrature formula
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 494-498
Cet article a éte moissonné depuis la source Math-Net.Ru
The convergence of approximate iterative realizations, and empirical estimation of the error of a random quadrature formula, based on approximation of the integrand by the method of least squares, are examined. The scope for using uniform non-random sequences is discussed. Numerical examples are given.
@article{ZVMMF_1983_23_2_a26,
author = {V. V. Zakharov and A. I. Koryakin},
title = {Realizations of an approximate random quadrature formula},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {494--498},
year = {1983},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a26/}
}
TY - JOUR AU - V. V. Zakharov AU - A. I. Koryakin TI - Realizations of an approximate random quadrature formula JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 494 EP - 498 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a26/ LA - ru ID - ZVMMF_1983_23_2_a26 ER -
V. V. Zakharov; A. I. Koryakin. Realizations of an approximate random quadrature formula. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 494-498. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a26/