On the incompleteness of a model of algorithms for computing estimates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 453-466
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the Linear closure $\mathscr L\{A\}$ of the algorithms for computing estimates is invalid on a set of regular problems, and therefore the model of such algorithms is incomplete. However, for effectively separable problems $\{Z\}$, with respect to a given system of the reference sets $\{\Omega\}$, the class of algorithms $\mathscr L\{A\}$ is correct. A counter example showing that the condition of effective partition of the problems is not essential for the validity of $\mathscr L\{A\}$, is given.
@article{ZVMMF_1983_23_2_a20,
author = {V. L. Matrosov},
title = {On the incompleteness of a model of algorithms for computing estimates},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {453--466},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a20/}
}
TY - JOUR AU - V. L. Matrosov TI - On the incompleteness of a model of algorithms for computing estimates JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 453 EP - 466 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a20/ LA - ru ID - ZVMMF_1983_23_2_a20 ER -
V. L. Matrosov. On the incompleteness of a model of algorithms for computing estimates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 453-466. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a20/