Optimal algorithms for integration of convex functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 267-277
Voir la notice de l'article provenant de la source Math-Net.Ru
A best quadrature formula and an algorithm that is optimal in one step for integrating a convex function of one variable are described. It is shown that the least guaranteed error of both methods are roughly the same, though, if the behaviour of the integrated function is “not the worst”, the efficiency of the optimal algorithm can be higher.
@article{ZVMMF_1983_23_2_a2,
author = {I. A. Glinkin},
title = {Optimal algorithms for integration of convex functions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {267--277},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a2/}
}
TY - JOUR AU - I. A. Glinkin TI - Optimal algorithms for integration of convex functions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 267 EP - 277 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a2/ LA - ru ID - ZVMMF_1983_23_2_a2 ER -
I. A. Glinkin. Optimal algorithms for integration of convex functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 267-277. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a2/