The method of orthogonal polynomials in linear transport theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 399-412
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of solving the linear transport equation by approximating the angular dependence of the solution by a finite sum of orthogonal polynomials is investigated. Under plane-symmetry conditions and for a polynomial scattering function an explicit form of approximate eigenfunctions is obtained, and thecharacteristic equation for the spectrum of eigenvalues of the problem is defined and analyzed. The convergence of the eigenfunctions to Keyes functions, and the identity of the limit and precise spectra are proved. Sufficient criteria for orthogonal polynomials to be applicable transport theory are established.
@article{ZVMMF_1983_23_2_a15,
author = {A. A. Akhmonen and G. A. Tyurin},
title = {The method of orthogonal polynomials in linear transport theory},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {399--412},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a15/}
}
TY - JOUR AU - A. A. Akhmonen AU - G. A. Tyurin TI - The method of orthogonal polynomials in linear transport theory JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 399 EP - 412 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a15/ LA - ru ID - ZVMMF_1983_23_2_a15 ER -
%0 Journal Article %A A. A. Akhmonen %A G. A. Tyurin %T The method of orthogonal polynomials in linear transport theory %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1983 %P 399-412 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a15/ %G ru %F ZVMMF_1983_23_2_a15
A. A. Akhmonen; G. A. Tyurin. The method of orthogonal polynomials in linear transport theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 2, pp. 399-412. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_2_a15/