Duality relations connected with Gaussian elimination
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 1, pp. 213-216
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the duality relations associated with Gauss's method it is shown that: 1. Any main submatrix of a totally non-degenerate matrix $A$; is stipulated (in the sense of an arbitrary monotonic norm) to be not inferior to $A$; itself; 2. If the inverse of matrix $A$; is diagonally dominant with respect to the columns, then the linear system $Ax=b$ is regularly solved by Jordan's method without the main element being chosen.
@article{ZVMMF_1983_23_1_a24,
author = {Kh. D. Ikramov},
title = {Duality relations connected with {Gaussian} elimination},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {213--216},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_1_a24/}
}
TY - JOUR AU - Kh. D. Ikramov TI - Duality relations connected with Gaussian elimination JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 213 EP - 216 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_1_a24/ LA - ru ID - ZVMMF_1983_23_1_a24 ER -
Kh. D. Ikramov. Duality relations connected with Gaussian elimination. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 1, pp. 213-216. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_1_a24/