The angular potential for the operator $\Delta+c(x)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1162-1177

Voir la notice de l'article provenant de la source Math-Net.Ru

Angular potential theory is outlined for the operator $\mathcal{L}=\Delta +c(x)$, and the results are used to study an integral equation occurring in the theory of tidal-wave diffraction.
@article{ZVMMF_1979_19_5_a8,
     author = {P. N. Vabishchevich and S. A. Gabov and P. V. Shvetsov},
     title = {The angular potential for the operator $\Delta+c(x)$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1162--1177},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a8/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - S. A. Gabov
AU  - P. V. Shvetsov
TI  - The angular potential for the operator $\Delta+c(x)$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 1162
EP  - 1177
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a8/
LA  - ru
ID  - ZVMMF_1979_19_5_a8
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A S. A. Gabov
%A P. V. Shvetsov
%T The angular potential for the operator $\Delta+c(x)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 1162-1177
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a8/
%G ru
%F ZVMMF_1979_19_5_a8
P. N. Vabishchevich; S. A. Gabov; P. V. Shvetsov. The angular potential for the operator $\Delta+c(x)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1162-1177. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a8/