The angular potential for the operator $\Delta+c(x)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1162-1177
Voir la notice de l'article provenant de la source Math-Net.Ru
Angular potential theory is outlined for the operator $\mathcal{L}=\Delta +c(x)$, and the results are used to study an integral equation occurring in the theory of tidal-wave diffraction.
@article{ZVMMF_1979_19_5_a8,
author = {P. N. Vabishchevich and S. A. Gabov and P. V. Shvetsov},
title = {The angular potential for the operator $\Delta+c(x)$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1162--1177},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a8/}
}
TY - JOUR AU - P. N. Vabishchevich AU - S. A. Gabov AU - P. V. Shvetsov TI - The angular potential for the operator $\Delta+c(x)$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 1162 EP - 1177 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a8/ LA - ru ID - ZVMMF_1979_19_5_a8 ER -
%0 Journal Article %A P. N. Vabishchevich %A S. A. Gabov %A P. V. Shvetsov %T The angular potential for the operator $\Delta+c(x)$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 1162-1177 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a8/ %G ru %F ZVMMF_1979_19_5_a8
P. N. Vabishchevich; S. A. Gabov; P. V. Shvetsov. The angular potential for the operator $\Delta+c(x)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1162-1177. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a8/