The solution of singular integral equations by approximate projection methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1149-1161
Voir la notice de l'article provenant de la source Math-Net.Ru
The approximate solution of singular equations of the 1st and 2nd kinds, when the line of integration is a segment, is considered. By contraction of the domain of definition or range of values of the operator, the one-to-one property of the mapping is established. Versions of the Bubnov-Galerkin method are used for the approximation solution. Chebyshev and Jacobi polynomials are used as coordinate elements. It is shown that the algebraic system is uniquely solvable for fairly large $n$, and that the approximate solutions converge to the exact solution in spaces with a weight. The process is stable.
@article{ZVMMF_1979_19_5_a7,
author = {A. V. Dzhishkariani},
title = {The solution of~singular integral equations by~approximate projection methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1149--1161},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a7/}
}
TY - JOUR AU - A. V. Dzhishkariani TI - The solution of singular integral equations by approximate projection methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 1149 EP - 1161 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a7/ LA - ru ID - ZVMMF_1979_19_5_a7 ER -
%0 Journal Article %A A. V. Dzhishkariani %T The solution of singular integral equations by approximate projection methods %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 1149-1161 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a7/ %G ru %F ZVMMF_1979_19_5_a7
A. V. Dzhishkariani. The solution of singular integral equations by approximate projection methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1149-1161. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a7/