Solution of a system of linear equations with an incomplete circulant matrix by a discrete Fourier transformation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1333-1336
Voir la notice de l'article provenant de la source Math-Net.Ru
An algorithm is described for finding the solution with least Euclidean norm of a subdefinite system of linear equations with an incomplete circulant matrix of dimensions $m\times n$, in which the calculation of the pseudo-inverse matrix is replaced by some discrete Fourier transformations of vectors of dimension $n$ and the inverse of a positive-definite matrix of order $n-m$.
@article{ZVMMF_1979_19_5_a26,
author = {A. V. Trushkin and D. S. Lebedev},
title = {Solution of a~system of linear equations with an incomplete circulant matrix by a~discrete {Fourier} transformation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1333--1336},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a26/}
}
TY - JOUR AU - A. V. Trushkin AU - D. S. Lebedev TI - Solution of a system of linear equations with an incomplete circulant matrix by a discrete Fourier transformation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 1333 EP - 1336 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a26/ LA - ru ID - ZVMMF_1979_19_5_a26 ER -
%0 Journal Article %A A. V. Trushkin %A D. S. Lebedev %T Solution of a system of linear equations with an incomplete circulant matrix by a discrete Fourier transformation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 1333-1336 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a26/ %G ru %F ZVMMF_1979_19_5_a26
A. V. Trushkin; D. S. Lebedev. Solution of a system of linear equations with an incomplete circulant matrix by a discrete Fourier transformation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1333-1336. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a26/