The computation of one-dimensional non-stationary problems of gravitational gas dynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1253-1261
Voir la notice de l'article provenant de la source Math-Net.Ru
Some features of the numerical solution of one-dimensional non-stationary problems of gas dynamics when gravity forces are present are studied. The problem of the spread of shock waves in the sun's atmosphere is discussed. The effectiveness of the use of completely conservative difference schemes in problems of this class is demonstrated. The process of periodic formation of shock waves in the atmosphere for a monotonic dynamic action on its lower boundary is explained.
@article{ZVMMF_1979_19_5_a15,
author = {Yu. P. Popov and A. G. Kosovichev},
title = {The computation of one-dimensional non-stationary problems of gravitational gas dynamics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1253--1261},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a15/}
}
TY - JOUR AU - Yu. P. Popov AU - A. G. Kosovichev TI - The computation of one-dimensional non-stationary problems of gravitational gas dynamics JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 1253 EP - 1261 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a15/ LA - ru ID - ZVMMF_1979_19_5_a15 ER -
%0 Journal Article %A Yu. P. Popov %A A. G. Kosovichev %T The computation of one-dimensional non-stationary problems of gravitational gas dynamics %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 1253-1261 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a15/ %G ru %F ZVMMF_1979_19_5_a15
Yu. P. Popov; A. G. Kosovichev. The computation of one-dimensional non-stationary problems of gravitational gas dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1253-1261. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a15/