Asymptotic behaviour of quasi-eigenvalues of the Laplace operator in the case of the outside of a circular disc
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1217-1227

Voir la notice de l'article provenant de la source Math-Net.Ru

An analisys of the exact solution is used to obtain the asymptotic behaviour as $|K| \to \infty$ of the quasi-eigenvalues $K$, closest to the $Im~K = 0$ axis, of the Laplace operator in the case of the outside of a circular disc (it is assumed that the Neumann boundary condition holds on the disc itself). A geometrical interpretation is given for the asymptotic expressions for the quasi-eigenfunctions of the Laplace operator, in terms of geometrical optics.
@article{ZVMMF_1979_19_5_a12,
     author = {N. S. Grigor'ev},
     title = {Asymptotic behaviour of~quasi-eigenvalues of~the {Laplace} operator in~the case of~the outside of~a~circular disc},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1217--1227},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a12/}
}
TY  - JOUR
AU  - N. S. Grigor'ev
TI  - Asymptotic behaviour of quasi-eigenvalues of the Laplace operator in the case of the outside of a circular disc
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 1217
EP  - 1227
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a12/
LA  - ru
ID  - ZVMMF_1979_19_5_a12
ER  - 
%0 Journal Article
%A N. S. Grigor'ev
%T Asymptotic behaviour of quasi-eigenvalues of the Laplace operator in the case of the outside of a circular disc
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 1217-1227
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a12/
%G ru
%F ZVMMF_1979_19_5_a12
N. S. Grigor'ev. Asymptotic behaviour of quasi-eigenvalues of the Laplace operator in the case of the outside of a circular disc. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1217-1227. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a12/