Asymptotic behaviour of quasi-eigenvalues of the Laplace operator in the case of the outside of a circular disc
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1217-1227
Voir la notice de l'article provenant de la source Math-Net.Ru
An analisys of the exact solution is used to obtain the asymptotic behaviour as $|K| \to \infty$ of the quasi-eigenvalues $K$, closest to the $Im~K = 0$ axis, of the Laplace operator in the case of the outside of a circular disc (it is assumed that the Neumann boundary condition holds on the disc itself). A geometrical interpretation is given for the asymptotic expressions for the quasi-eigenfunctions of the Laplace operator, in terms of geometrical optics.
@article{ZVMMF_1979_19_5_a12,
author = {N. S. Grigor'ev},
title = {Asymptotic behaviour of~quasi-eigenvalues of~the {Laplace} operator in~the case of~the outside of~a~circular disc},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1217--1227},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a12/}
}
TY - JOUR AU - N. S. Grigor'ev TI - Asymptotic behaviour of quasi-eigenvalues of the Laplace operator in the case of the outside of a circular disc JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 1217 EP - 1227 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a12/ LA - ru ID - ZVMMF_1979_19_5_a12 ER -
%0 Journal Article %A N. S. Grigor'ev %T Asymptotic behaviour of quasi-eigenvalues of the Laplace operator in the case of the outside of a circular disc %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 1217-1227 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a12/ %G ru %F ZVMMF_1979_19_5_a12
N. S. Grigor'ev. Asymptotic behaviour of quasi-eigenvalues of the Laplace operator in the case of the outside of a circular disc. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1217-1227. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a12/