Justification of the projection method for solving axisymmetric problems of diffraction by locally inhomogeneous bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1188-1204
Voir la notice de l'article provenant de la source Math-Net.Ru
The proof of convergence in the appropriate functional spaces, of the approximate solutions to the exact solution, is discussed for an incomplete numerical projection method of Galerkin type, for axisymmetric problems of the excitation of metal bodies surrounded by a layer of plasma. The cases of two different polarizations, and of ideal and impedance boundary conditions on the metal surface, are distinguished.
@article{ZVMMF_1979_19_5_a10,
author = {V. F. Apel'tsin},
title = {Justification of~the projection method for solving axisymmetric problems of~diffraction by~locally inhomogeneous bodies},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1188--1204},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a10/}
}
TY - JOUR AU - V. F. Apel'tsin TI - Justification of the projection method for solving axisymmetric problems of diffraction by locally inhomogeneous bodies JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 1188 EP - 1204 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a10/ LA - ru ID - ZVMMF_1979_19_5_a10 ER -
%0 Journal Article %A V. F. Apel'tsin %T Justification of the projection method for solving axisymmetric problems of diffraction by locally inhomogeneous bodies %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 1188-1204 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a10/ %G ru %F ZVMMF_1979_19_5_a10
V. F. Apel'tsin. Justification of the projection method for solving axisymmetric problems of diffraction by locally inhomogeneous bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 5, pp. 1188-1204. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_5_a10/