Piecewise linear approximation of a non-convex set by a polyhedron
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 4, pp. 878-888

Voir la notice de l'article provenant de la source Math-Net.Ru

The piecewise linear approximation of a non-convex simply connected set by a polyhedron is described, and the geometrical characteristics of the polyhedron are constructed, namely, the matrices of intersections of the faces by the non-local continuations of the support faces, and the sets of pairs of non-locally adjacent support faces. The relevant data blocks are constructed in the computer memory, and rules are given for their subsequent modification as the approximating polyhedron is successively refined.
@article{ZVMMF_1979_19_4_a8,
     author = {A. I. Samylovskii and B. G. Sushkov},
     title = {Piecewise linear approximation of~a~non-convex set by~a~polyhedron},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {878--888},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_4_a8/}
}
TY  - JOUR
AU  - A. I. Samylovskii
AU  - B. G. Sushkov
TI  - Piecewise linear approximation of a non-convex set by a polyhedron
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 878
EP  - 888
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_4_a8/
LA  - ru
ID  - ZVMMF_1979_19_4_a8
ER  - 
%0 Journal Article
%A A. I. Samylovskii
%A B. G. Sushkov
%T Piecewise linear approximation of a non-convex set by a polyhedron
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 878-888
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_4_a8/
%G ru
%F ZVMMF_1979_19_4_a8
A. I. Samylovskii; B. G. Sushkov. Piecewise linear approximation of a non-convex set by a polyhedron. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 4, pp. 878-888. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_4_a8/