Angular potential for solving an elliptic equation with variable coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 652-664
Voir la notice de l'article provenant de la source Math-Net.Ru
The theory of the angular potential is constructed for $k$-harmonic functions on the plane, i.e. for regular solutions of the equation $div(k(M)~grad~u)=0$. An example is given of application of the results to the construction of a closed solution of the problem on the jump of directional derivatives of $k$-harmonic functions.
@article{ZVMMF_1979_19_3_a8,
author = {P. N. Vabishchevich and S. A. Gabov},
title = {Angular potential for solving an elliptic equation with variable coefficients},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {652--664},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a8/}
}
TY - JOUR AU - P. N. Vabishchevich AU - S. A. Gabov TI - Angular potential for solving an elliptic equation with variable coefficients JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 652 EP - 664 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a8/ LA - ru ID - ZVMMF_1979_19_3_a8 ER -
%0 Journal Article %A P. N. Vabishchevich %A S. A. Gabov %T Angular potential for solving an elliptic equation with variable coefficients %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 652-664 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a8/ %G ru %F ZVMMF_1979_19_3_a8
P. N. Vabishchevich; S. A. Gabov. Angular potential for solving an elliptic equation with variable coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 652-664. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a8/