Angular potential for solving an elliptic equation with variable coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 652-664

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of the angular potential is constructed for $k$-harmonic functions on the plane, i.e. for regular solutions of the equation $div(k(M)~grad~u)=0$. An example is given of application of the results to the construction of a closed solution of the problem on the jump of directional derivatives of $k$-harmonic functions.
@article{ZVMMF_1979_19_3_a8,
     author = {P. N. Vabishchevich and S. A. Gabov},
     title = {Angular potential for solving an elliptic equation with variable coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {652--664},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a8/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - S. A. Gabov
TI  - Angular potential for solving an elliptic equation with variable coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 652
EP  - 664
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a8/
LA  - ru
ID  - ZVMMF_1979_19_3_a8
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A S. A. Gabov
%T Angular potential for solving an elliptic equation with variable coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 652-664
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a8/
%G ru
%F ZVMMF_1979_19_3_a8
P. N. Vabishchevich; S. A. Gabov. Angular potential for solving an elliptic equation with variable coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 652-664. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a8/