A theorem on the local rank of one-place predicates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 787-790
Voir la notice de l'article provenant de la source Math-Net.Ru
The language of the narrow calculus of predicates is used to described problems involving the calculation of the aggregated of estimates of a one-place predicate on the elements of a set with the aid of local means. It is proved that the calculation of a majorant function is in the general case involves selecting the subsets of elements of the neighbourhood of maximal degree participating in the description of the problem.
@article{ZVMMF_1979_19_3_a24,
author = {A. P. Vinogradov},
title = {A~theorem on the local rank of one-place predicates},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {787--790},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a24/}
}
TY - JOUR AU - A. P. Vinogradov TI - A theorem on the local rank of one-place predicates JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 787 EP - 790 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a24/ LA - ru ID - ZVMMF_1979_19_3_a24 ER -
A. P. Vinogradov. A theorem on the local rank of one-place predicates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 787-790. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a24/