Construction of a normal solution of non-linear ill-posed problems by the method of regularization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 594-600

Voir la notice de l'article provenant de la source Math-Net.Ru

A new way of choosing the regularization parameter when solving an ill-posed problem with approximately specified non-linear operator is described, based on a comparison of the discrepancy with an auxiliary functional (principle of discrepancy comparison). With the aid of this principle, convergence of the regularized solution to the normal solution (in the absence of uniqueness) is obtained for a wide class of normed spaces. Efficient algorithms are given for finding the regularization parameter in practical computations.
@article{ZVMMF_1979_19_3_a2,
     author = {A. V. Baev},
     title = {Construction of a normal solution of non-linear ill-posed problems by the method of regularization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {594--600},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a2/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - Construction of a normal solution of non-linear ill-posed problems by the method of regularization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 594
EP  - 600
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a2/
LA  - ru
ID  - ZVMMF_1979_19_3_a2
ER  - 
%0 Journal Article
%A A. V. Baev
%T Construction of a normal solution of non-linear ill-posed problems by the method of regularization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 594-600
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a2/
%G ru
%F ZVMMF_1979_19_3_a2
A. V. Baev. Construction of a normal solution of non-linear ill-posed problems by the method of regularization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 594-600. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a2/