A generalized “wave” method for solving extremal problems on graphs
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 739-755

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimization complex of a graph is constructed, and on the basis of this a statement is formalized in the class of wave subgraphs introduced in this paper also, and a solution of extremal problems on an arbitrary flow graph is given. The applicability of the method to the solution of multi-iteration problems is considered using the example of the problem of the greatest pair-combination of a bipartite graph. A new algorithm with an estimate of complexity improving the known estimate $O(n^{5/2})$ is presented.
@article{ZVMMF_1979_19_3_a15,
     author = {S. M. Avdoshin and V. V. Belov},
     title = {A~generalized {\textquotedblleft}wave{\textquotedblright} method for solving extremal problems on graphs},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {739--755},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a15/}
}
TY  - JOUR
AU  - S. M. Avdoshin
AU  - V. V. Belov
TI  - A generalized “wave” method for solving extremal problems on graphs
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 739
EP  - 755
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a15/
LA  - ru
ID  - ZVMMF_1979_19_3_a15
ER  - 
%0 Journal Article
%A S. M. Avdoshin
%A V. V. Belov
%T A generalized “wave” method for solving extremal problems on graphs
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 739-755
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a15/
%G ru
%F ZVMMF_1979_19_3_a15
S. M. Avdoshin; V. V. Belov. A generalized “wave” method for solving extremal problems on graphs. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 739-755. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a15/