The algebraic complexity of computing a family of bilinear forms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 563-580
Voir la notice de l'article provenant de la source Math-Net.Ru
Some aspects of the theory of the algebraic complexity of computations are investigated, namely, the complexity of the computation of certain sets of bilinear forms the point of view of the number of multiplications and divisions. The complexity of the computation of a pair of bilinear forms is characterized. A new, close to linear, estimate is obtained for the complexity of computing a product of polynomials over a finite field. A group of non-singular linear tensor-rank-preserving transformations is described. The behavior almost everywhere of the rank in tensor space is considered.
@article{ZVMMF_1979_19_3_a0,
author = {D. Yu. Grigor'ev},
title = {The algebraic complexity of computing a family of bilinear forms},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {563--580},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a0/}
}
TY - JOUR AU - D. Yu. Grigor'ev TI - The algebraic complexity of computing a family of bilinear forms JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 563 EP - 580 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a0/ LA - ru ID - ZVMMF_1979_19_3_a0 ER -
D. Yu. Grigor'ev. The algebraic complexity of computing a family of bilinear forms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 3, pp. 563-580. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_3_a0/