Methods for solving constrained extremum problems in the presence of random noise
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 70-78

Voir la notice de l'article provenant de la source Math-Net.Ru

The extemum problem with equation-type constraints is considered, when the measurements of all functions and their gradients are subject to noise. Three methods of solution are described: they are modifications of the method of Lagrange multipliers, the method of penalty functions, and the method of penalty estimates respectively. The methods are shown to be convergent in a specific probability sense.
@article{ZVMMF_1979_19_1_a6,
     author = {B. T. Polyak},
     title = {Methods for solving constrained extremum problems in the presence of random noise},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {70--78},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a6/}
}
TY  - JOUR
AU  - B. T. Polyak
TI  - Methods for solving constrained extremum problems in the presence of random noise
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 70
EP  - 78
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a6/
LA  - ru
ID  - ZVMMF_1979_19_1_a6
ER  - 
%0 Journal Article
%A B. T. Polyak
%T Methods for solving constrained extremum problems in the presence of random noise
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 70-78
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a6/
%G ru
%F ZVMMF_1979_19_1_a6
B. T. Polyak. Methods for solving constrained extremum problems in the presence of random noise. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 70-78. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a6/