The unique formation of conditions on the interior and exterior boundaries of the domain in the $P_{2N+1}$-approximation of the method of spherical harmonics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 248-252
Voir la notice de l'article provenant de la source Math-Net.Ru
The principles of the formation of the conditions on the interior (contact) boundaries of a domain, strictly consistent with the standard procedure for deriving the equations of the spherical harmonics method, are explained in terms of the most general form of the $P_N$-approximation.
@article{ZVMMF_1979_19_1_a26,
author = {V. V. Smelov},
title = {The~unique formation of conditions on the interior and exterior boundaries of the domain in the $P_{2N+1}$-approximation of the method of spherical harmonics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {248--252},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a26/}
}
TY - JOUR
AU - V. V. Smelov
TI - The unique formation of conditions on the interior and exterior boundaries of the domain in the $P_{2N+1}$-approximation of the method of spherical harmonics
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 1979
SP - 248
EP - 252
VL - 19
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a26/
LA - ru
ID - ZVMMF_1979_19_1_a26
ER -
%0 Journal Article
%A V. V. Smelov
%T The unique formation of conditions on the interior and exterior boundaries of the domain in the $P_{2N+1}$-approximation of the method of spherical harmonics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 248-252
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a26/
%G ru
%F ZVMMF_1979_19_1_a26
V. V. Smelov. The unique formation of conditions on the interior and exterior boundaries of the domain in the $P_{2N+1}$-approximation of the method of spherical harmonics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 248-252. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a26/