An optimal corrector for a set of recognition algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 204-215

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of improving the quality of recognition by the combination of algorithms into commitees is solved. For a set of decisions of individual algorithms a method is proposed for constructing a monotonic corrector of these algorithms, optimal in the sense of recognition quality.
@article{ZVMMF_1979_19_1_a18,
     author = {V. V. Krasnoproshin},
     title = {An~optimal corrector for a set of recognition algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {204--215},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a18/}
}
TY  - JOUR
AU  - V. V. Krasnoproshin
TI  - An optimal corrector for a set of recognition algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 204
EP  - 215
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a18/
LA  - ru
ID  - ZVMMF_1979_19_1_a18
ER  - 
%0 Journal Article
%A V. V. Krasnoproshin
%T An optimal corrector for a set of recognition algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 204-215
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a18/
%G ru
%F ZVMMF_1979_19_1_a18
V. V. Krasnoproshin. An optimal corrector for a set of recognition algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 204-215. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a18/