An optimal corrector for a set of recognition algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 204-215
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of improving the quality of recognition by the combination of algorithms into commitees is solved. For a set of decisions of individual algorithms a method is proposed for constructing a monotonic corrector of these algorithms, optimal in the sense of recognition quality.
@article{ZVMMF_1979_19_1_a18,
author = {V. V. Krasnoproshin},
title = {An~optimal corrector for a set of recognition algorithms},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {204--215},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a18/}
}
TY - JOUR AU - V. V. Krasnoproshin TI - An optimal corrector for a set of recognition algorithms JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 204 EP - 215 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a18/ LA - ru ID - ZVMMF_1979_19_1_a18 ER -
V. V. Krasnoproshin. An optimal corrector for a set of recognition algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 204-215. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a18/