Iterative methods for solving linear and quasilinear projection-difference analogs of fourth-order boundary-value problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 143-155
Voir la notice de l'article provenant de la source Math-Net.Ru
Projection-difference methods are constructed and investigated for solving fourth-order elliptic equations, for which efficient iterative methods can be used in a rectangle, on one part of whose boundary Dirichlet conditions, and on the other part natural boundary conditions are specified. The linear and non-linear problems of the equilibrium of a rectangular plate are studied as examples.
@article{ZVMMF_1979_19_1_a13,
author = {N. A. Strelkov},
title = {Iterative methods for solving linear and quasilinear projection-difference analogs of fourth-order boundary-value problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {143--155},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a13/}
}
TY - JOUR AU - N. A. Strelkov TI - Iterative methods for solving linear and quasilinear projection-difference analogs of fourth-order boundary-value problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 143 EP - 155 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a13/ LA - ru ID - ZVMMF_1979_19_1_a13 ER -
%0 Journal Article %A N. A. Strelkov %T Iterative methods for solving linear and quasilinear projection-difference analogs of fourth-order boundary-value problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 143-155 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a13/ %G ru %F ZVMMF_1979_19_1_a13
N. A. Strelkov. Iterative methods for solving linear and quasilinear projection-difference analogs of fourth-order boundary-value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a13/