A strong extremum principle for weakly elliptically connected second-order operators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 129-142
Voir la notice de l'article provenant de la source Math-Net.Ru
A strong extremum principle is proved for weakly elliptically connected 2nd-order operators; it is an extension of Aleksandrov's isotropic extremum principle for elliptically connected 2nd-operators.
@article{ZVMMF_1979_19_1_a12,
author = {L. I. Kamynin and B. N. Khimchenko},
title = {A~strong extremum principle for weakly elliptically connected second-order operators},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {129--142},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a12/}
}
TY - JOUR AU - L. I. Kamynin AU - B. N. Khimchenko TI - A strong extremum principle for weakly elliptically connected second-order operators JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1979 SP - 129 EP - 142 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a12/ LA - ru ID - ZVMMF_1979_19_1_a12 ER -
%0 Journal Article %A L. I. Kamynin %A B. N. Khimchenko %T A strong extremum principle for weakly elliptically connected second-order operators %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1979 %P 129-142 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a12/ %G ru %F ZVMMF_1979_19_1_a12
L. I. Kamynin; B. N. Khimchenko. A strong extremum principle for weakly elliptically connected second-order operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a12/