A strong extremum principle for weakly elliptically connected second-order operators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 129-142

Voir la notice de l'article provenant de la source Math-Net.Ru

A strong extremum principle is proved for weakly elliptically connected 2nd-order operators; it is an extension of Aleksandrov's isotropic extremum principle for elliptically connected 2nd-operators.
@article{ZVMMF_1979_19_1_a12,
     author = {L. I. Kamynin and B. N. Khimchenko},
     title = {A~strong extremum principle for weakly elliptically connected second-order operators},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a12/}
}
TY  - JOUR
AU  - L. I. Kamynin
AU  - B. N. Khimchenko
TI  - A strong extremum principle for weakly elliptically connected second-order operators
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1979
SP  - 129
EP  - 142
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a12/
LA  - ru
ID  - ZVMMF_1979_19_1_a12
ER  - 
%0 Journal Article
%A L. I. Kamynin
%A B. N. Khimchenko
%T A strong extremum principle for weakly elliptically connected second-order operators
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1979
%P 129-142
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a12/
%G ru
%F ZVMMF_1979_19_1_a12
L. I. Kamynin; B. N. Khimchenko. A strong extremum principle for weakly elliptically connected second-order operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 19 (1979) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/ZVMMF_1979_19_1_a12/