On finding the asymptotes to the solutions of short-wave diffraction problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 1 (1961) no. 2, pp. 224-245
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the following notation: $x,y,s$ a are the radius vectors of points in the three-dimensional region $D$ or on the boundary $S$ of this region; $|x-s|$ is the distance between the points $x$ and $s$; $\partial s$, $\partial s_j$ is an element of area of the surface $S$; $\mathbf n$ is the orthonormal to $S$ going out of $D$; $u^+(x)$ is the limit of the function $u(y)$ as the point y of $D$ tends to the point $x$ on the surface $S$; $(\partial u/\partial n)^+$ is the boundary value of the normal derivative passing into $S$ from the region $D$; $u^-$, $(\partial u/\partial n)^-$; have analogous meanings in passing into $S$ from the other side of the surface.
@article{ZVMMF_1961_1_2_a4,
author = {A. Ya. Povzner and I. V. Sukharevskii},
title = {On finding the asymptotes to the solutions of short-wave diffraction problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {224--245},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1961},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_2_a4/}
}
TY - JOUR AU - A. Ya. Povzner AU - I. V. Sukharevskii TI - On finding the asymptotes to the solutions of short-wave diffraction problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1961 SP - 224 EP - 245 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_2_a4/ LA - ru ID - ZVMMF_1961_1_2_a4 ER -
%0 Journal Article %A A. Ya. Povzner %A I. V. Sukharevskii %T On finding the asymptotes to the solutions of short-wave diffraction problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1961 %P 224-245 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_2_a4/ %G ru %F ZVMMF_1961_1_2_a4
A. Ya. Povzner; I. V. Sukharevskii. On finding the asymptotes to the solutions of short-wave diffraction problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 1 (1961) no. 2, pp. 224-245. http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_2_a4/