The interaction between a shock wave and the free surface of a liquid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 1 (1961) no. 1, pp. 129-143

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion of the front of a plane arbitrary shock wave over the free surface of a liquid with a rectilinear inclined base is considered. The problem reduces to a boundary-value problem in the theory of analytic functions with discontinuous coefficients. The problem of what happens when a plane shock wave, travelling along a smooth wall, reaches the free surface of the liquid is discussed. It is shown that the problem can be studied linearly. This is done both for the gas and the liquid. The form of the free surface of the liquid, the pressure distribution, and the form of the shock wave, are found.
@article{ZVMMF_1961_1_1_a7,
     author = {K. A. Bezhanov},
     title = {The interaction between a shock wave and the free surface of a liquid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {129--143},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a7/}
}
TY  - JOUR
AU  - K. A. Bezhanov
TI  - The interaction between a shock wave and the free surface of a liquid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1961
SP  - 129
EP  - 143
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a7/
LA  - ru
ID  - ZVMMF_1961_1_1_a7
ER  - 
%0 Journal Article
%A K. A. Bezhanov
%T The interaction between a shock wave and the free surface of a liquid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1961
%P 129-143
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a7/
%G ru
%F ZVMMF_1961_1_1_a7
K. A. Bezhanov. The interaction between a shock wave and the free surface of a liquid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 1 (1961) no. 1, pp. 129-143. http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a7/