A method for partitioning a high order matrix into blocks in order to find its eigenvalues
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 1 (1961) no. 1, pp. 169-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To save time and space in a computer a method is derived of partitioning high-order and infinite matrices in such a way that their eigenvalues can be found. This method is iterative, and determines an eigenvalue approximately by introducing corrections to an eigenvalue of the truncated matrix. The matrix considered is taken to be symmetric. Comparisons are made between the eigenvalues of $A$ and of $\overline A$, matrix of the same order as the truncation of $A$, and derived from its blocks. A measure of the convergence of the iteration process is found.
@article{ZVMMF_1961_1_1_a11,
     author = {V. S. Shishov},
     title = {A method for partitioning a high order matrix into blocks in order to find its eigenvalues},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {169--173},
     year = {1961},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a11/}
}
TY  - JOUR
AU  - V. S. Shishov
TI  - A method for partitioning a high order matrix into blocks in order to find its eigenvalues
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1961
SP  - 169
EP  - 173
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a11/
LA  - ru
ID  - ZVMMF_1961_1_1_a11
ER  - 
%0 Journal Article
%A V. S. Shishov
%T A method for partitioning a high order matrix into blocks in order to find its eigenvalues
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1961
%P 169-173
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a11/
%G ru
%F ZVMMF_1961_1_1_a11
V. S. Shishov. A method for partitioning a high order matrix into blocks in order to find its eigenvalues. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 1 (1961) no. 1, pp. 169-173. http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a11/