A method for partitioning a high order matrix into blocks in order to find its eigenvalues
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 1 (1961) no. 1, pp. 169-173
Voir la notice de l'article provenant de la source Math-Net.Ru
To save time and space in a computer a method is derived of partitioning high-order and infinite matrices in such a way that their eigenvalues can be found. This method is iterative, and determines an eigenvalue approximately by introducing corrections to an eigenvalue of the truncated matrix. The matrix considered is taken to be symmetric. Comparisons are made between the eigenvalues of $A$ and of $\overline A$, matrix of the same order as the truncation of $A$, and derived from its blocks. A measure of the convergence of the iteration process is found.
@article{ZVMMF_1961_1_1_a11,
author = {V. S. Shishov},
title = {A method for partitioning a high order matrix into blocks in order to find its eigenvalues},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {169--173},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1961},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a11/}
}
TY - JOUR AU - V. S. Shishov TI - A method for partitioning a high order matrix into blocks in order to find its eigenvalues JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1961 SP - 169 EP - 173 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a11/ LA - ru ID - ZVMMF_1961_1_1_a11 ER -
%0 Journal Article %A V. S. Shishov %T A method for partitioning a high order matrix into blocks in order to find its eigenvalues %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1961 %P 169-173 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a11/ %G ru %F ZVMMF_1961_1_1_a11
V. S. Shishov. A method for partitioning a high order matrix into blocks in order to find its eigenvalues. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 1 (1961) no. 1, pp. 169-173. http://geodesic.mathdoc.fr/item/ZVMMF_1961_1_1_a11/