A Survey of Weak Majorization Relations on $\boldsymbol{{\ell^1(I)}^+}$ and Their Linear Preservers
Zbornik radova, Tome 20 (2022) no. 28, p. 343
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A survey about the most important properties of extended three weak majorization relations $\prec_w$, $\prec_s$ and $\prec^{ws}$ determined by stochastic operators on the discrete Lebesgue space $\ell^1(I)$, is presented.
In the second part, linear preservers of considered majorization relations, when $I$ is an infinite set, are characterized and many examples with concrete matrix forms of linear preservers are given.
Classification :
NN-02, 47B60, 15B51, 60E15, 15A86, 39B62, 47B38
Keywords: weak majorization, submajorization, weak supermajorization, linear preserver, stochastic operators, permutation and partial permutation
Keywords: weak majorization, submajorization, weak supermajorization, linear preserver, stochastic operators, permutation and partial permutation
@article{ZR_2022_20_28_a8,
author = {Martin Z. Ljubenovi\'c and Dragan S. Djordjevi\'c},
title = {A {Survey} of {Weak} {Majorization} {Relations} on $\boldsymbol{{\ell^1(I)}^+}$ and {Their} {Linear} {Preservers}},
journal = {Zbornik radova},
pages = {343 },
year = {2022},
volume = {20},
number = {28},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a8/}
}
TY - JOUR
AU - Martin Z. Ljubenović
AU - Dragan S. Djordjević
TI - A Survey of Weak Majorization Relations on $\boldsymbol{{\ell^1(I)}^+}$ and Their Linear Preservers
JO - Zbornik radova
PY - 2022
SP - 343
VL - 20
IS - 28
UR - http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a8/
LA - en
ID - ZR_2022_20_28_a8
ER -
Martin Z. Ljubenović; Dragan S. Djordjević. A Survey of Weak Majorization Relations on $\boldsymbol{{\ell^1(I)}^+}$ and Their Linear Preservers. Zbornik radova, Tome 20 (2022) no. 28, p. 343 . http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a8/