An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible Operators
Zbornik radova, Tome 20 (2022) no. 28, p. 113 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

After a brief introduction into classical Fredholm theory we consider Riesz operators, polynomially Riesz operators, generalized Drazin--Riesz invertible operators, as a generalization of Drazin invertible operators, as well as generalized Kato--Riesz decomposition for bounded linear operators on Banach spaces. Also, some properties of the corresponding spectra are investigated.
Classification : NN-02, 47A53, 47A10
Keywords: Banach space, semi-Fredholm operators, semi-Browder operators, Riesz operators, Kato operators, semi-Weyl operators, approximate point (surjective) spectrum, essential spectra
@article{ZR_2022_20_28_a3,
     author = {Sne\v{z}ana \v{C}. \v{Z}ivkovi\'c-Zlatanovi\'c},
     title = {An {Introduction} into {Fredholm} {Theory} and {Generalized} {Drazin-Riesz} {Invertible} {Operators}},
     journal = {Zbornik radova},
     pages = {113 },
     publisher = {mathdoc},
     volume = {20},
     number = {28},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a3/}
}
TY  - JOUR
AU  - Snežana Č. Živković-Zlatanović
TI  - An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible Operators
JO  - Zbornik radova
PY  - 2022
SP  - 113 
VL  - 20
IS  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a3/
LA  - en
ID  - ZR_2022_20_28_a3
ER  - 
%0 Journal Article
%A Snežana Č. Živković-Zlatanović
%T An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible Operators
%J Zbornik radova
%D 2022
%P 113 
%V 20
%N 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a3/
%G en
%F ZR_2022_20_28_a3
Snežana Č. Živković-Zlatanović. An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible Operators. Zbornik radova, Tome 20 (2022) no. 28, p. 113 . http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a3/