An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible Operators
Zbornik radova, Tome 20 (2022) no. 28, p. 113

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

After a brief introduction into classical Fredholm theory we consider Riesz operators, polynomially Riesz operators, generalized Drazin--Riesz invertible operators, as a generalization of Drazin invertible operators, as well as generalized Kato--Riesz decomposition for bounded linear operators on Banach spaces. Also, some properties of the corresponding spectra are investigated.
Classification : NN-02, 47A53, 47A10
Keywords: Banach space, semi-Fredholm operators, semi-Browder operators, Riesz operators, Kato operators, semi-Weyl operators, approximate point (surjective) spectrum, essential spectra
@article{ZR_2022_20_28_a3,
     author = {Sne\v{z}ana \v{C}. \v{Z}ivkovi\'c-Zlatanovi\'c},
     title = {An {Introduction} into {Fredholm} {Theory} and {Generalized} {Drazin-Riesz} {Invertible} {Operators}},
     journal = {Zbornik radova},
     pages = {113 },
     publisher = {mathdoc},
     volume = {20},
     number = {28},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a3/}
}
TY  - JOUR
AU  - Snežana Č. Živković-Zlatanović
TI  - An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible Operators
JO  - Zbornik radova
PY  - 2022
SP  - 113 
VL  - 20
IS  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a3/
LA  - en
ID  - ZR_2022_20_28_a3
ER  - 
%0 Journal Article
%A Snežana Č. Živković-Zlatanović
%T An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible Operators
%J Zbornik radova
%D 2022
%P 113 
%V 20
%N 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a3/
%G en
%F ZR_2022_20_28_a3
Snežana Č. Živković-Zlatanović. An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible Operators. Zbornik radova, Tome 20 (2022) no. 28, p. 113 . http://geodesic.mathdoc.fr/item/ZR_2022_20_28_a3/