Basis Problems for Borel Graphs
Zbornik radova, Tome 17 (2015) no. 25, p. 33 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Following [12], we examine dichotomies about graphs defined on standard Borel spaces in which the edge relation is also Borel. More precisely, we study the Borel homomorphisms between such graphs and the corresponding notion of Borel chromatic number. It turns out that this category enjoys structural results not present in the category of all graphs. In particular, the concept of Borel chromatic number frequently does not coincide with the concept of the usual chromatic number. Cases of special interest are provided by graphs defined by the shift operation. We also briefly analyze graphs defined on families of finite sets of natural numbers.
Classification : 05-02 05C63 03E05 05C15
Keywords: Borel graphs, chromatic numbers
@article{ZR_2015_17_25_a1,
     author = {Carlos A. Di Prisco and Stevo Todor\v{c}evi\'c},
     title = {Basis {Problems} for {Borel} {Graphs}},
     journal = {Zbornik radova},
     pages = {33 },
     publisher = {mathdoc},
     volume = {17},
     number = {25},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_2015_17_25_a1/}
}
TY  - JOUR
AU  - Carlos A. Di Prisco
AU  - Stevo Todorčević
TI  - Basis Problems for Borel Graphs
JO  - Zbornik radova
PY  - 2015
SP  - 33 
VL  - 17
IS  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_2015_17_25_a1/
LA  - en
ID  - ZR_2015_17_25_a1
ER  - 
%0 Journal Article
%A Carlos A. Di Prisco
%A Stevo Todorčević
%T Basis Problems for Borel Graphs
%J Zbornik radova
%D 2015
%P 33 
%V 17
%N 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_2015_17_25_a1/
%G en
%F ZR_2015_17_25_a1
Carlos A. Di Prisco; Stevo Todorčević. Basis Problems for Borel Graphs. Zbornik radova, Tome 17 (2015) no. 25, p. 33 . http://geodesic.mathdoc.fr/item/ZR_2015_17_25_a1/