Vectors of the Body Mass Moments
Zbornik radova, Tome 8 (1998) no. 16, p. 45 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This monograph paper introduces the vector of the body mass inertia moment at the point N for tb:e axis oriented by the unit vector n. The vector is used for interpretation of the rigid body kinetic characteristics. The change of the vector of the rigid body mass inertia moment is determined in the transition from one space point to another when the axis retains its orientation which represents the Huygens-Steiner theorem translated for the defined body mass inertia moment vector. Then the change of the vector of the body mass inertia moment is defined at the given point in the case of the axis changing its orientation in the way analogous to the Cauchy equations in the Elasticity theory. Then the interpretation of the main mass inertia moments asymmetry are defined. The relation between the axis deviation load vector by the body mass inertia moment for the octahedron axis and the inertia mass asymmetry moments axis is analyzed.
@article{ZR_1998_8_16_a2,
     author = {Katica Stevanovi\'c Hedrih},
     title = {Vectors of the {Body} {Mass} {Moments}},
     journal = {Zbornik radova},
     pages = {45 },
     publisher = {mathdoc},
     volume = {8},
     number = {16},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_1998_8_16_a2/}
}
TY  - JOUR
AU  - Katica Stevanović Hedrih
TI  - Vectors of the Body Mass Moments
JO  - Zbornik radova
PY  - 1998
SP  - 45 
VL  - 8
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_1998_8_16_a2/
LA  - en
ID  - ZR_1998_8_16_a2
ER  - 
%0 Journal Article
%A Katica Stevanović Hedrih
%T Vectors of the Body Mass Moments
%J Zbornik radova
%D 1998
%P 45 
%V 8
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_1998_8_16_a2/
%G en
%F ZR_1998_8_16_a2
Katica Stevanović Hedrih. Vectors of the Body Mass Moments. Zbornik radova, Tome 8 (1998) no. 16, p. 45 . http://geodesic.mathdoc.fr/item/ZR_1998_8_16_a2/