Flag Manifolds
Zbornik radova, Tome 6 (1997) no. 14, p. 3 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Recall that a Lie group is a smooth maniford $G$ together with structure of a group such that the group operations $\mu:Gimes G\rightarrow G,\;\;(g_1,g_2)\rightarrow g_1\cdot g_2$ $i:G\rightarrow G,\;\;g\rightarrow g^{-1}$ are smooth mappings.
@article{ZR_1997_6_14_a2,
     author = {D. V. Alekseevsky},
     title = {Flag {Manifolds}},
     journal = {Zbornik radova},
     pages = {3 },
     publisher = {mathdoc},
     volume = {6},
     number = {14},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_1997_6_14_a2/}
}
TY  - JOUR
AU  - D. V. Alekseevsky
TI  - Flag Manifolds
JO  - Zbornik radova
PY  - 1997
SP  - 3 
VL  - 6
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_1997_6_14_a2/
LA  - en
ID  - ZR_1997_6_14_a2
ER  - 
%0 Journal Article
%A D. V. Alekseevsky
%T Flag Manifolds
%J Zbornik radova
%D 1997
%P 3 
%V 6
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_1997_6_14_a2/
%G en
%F ZR_1997_6_14_a2
D. V. Alekseevsky. Flag Manifolds. Zbornik radova, Tome 6 (1997) no. 14, p. 3 . http://geodesic.mathdoc.fr/item/ZR_1997_6_14_a2/