Representation Theorem for Minimal $\sigma$-Algebras
Zbornik radova, Tome 2 (1977) no. 10, p. 99 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The purpose of this paper is to state some properties of minimal separating $\sigma$-algebras and of $\sigma$-compact topological spaces. Original motivation of this work is to consider the problem of existence of a minimal separating $\sigma$-algebra without any singleton. This fine problem, comes from a problem of statistics, is proposed by H. Morimoto who communicated me the following elementary but fundamental example of such a $\sigma$-algebra which appears in [18].
@article{ZR_1977_2_10_a7,
     author = {Kanji Namba},
     title = {Representation {Theorem} for {Minimal} $\sigma${-Algebras}},
     journal = {Zbornik radova},
     pages = {99 },
     publisher = {mathdoc},
     volume = {2},
     number = {10},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_1977_2_10_a7/}
}
TY  - JOUR
AU  - Kanji Namba
TI  - Representation Theorem for Minimal $\sigma$-Algebras
JO  - Zbornik radova
PY  - 1977
SP  - 99 
VL  - 2
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_1977_2_10_a7/
LA  - en
ID  - ZR_1977_2_10_a7
ER  - 
%0 Journal Article
%A Kanji Namba
%T Representation Theorem for Minimal $\sigma$-Algebras
%J Zbornik radova
%D 1977
%P 99 
%V 2
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_1977_2_10_a7/
%G en
%F ZR_1977_2_10_a7
Kanji Namba. Representation Theorem for Minimal $\sigma$-Algebras. Zbornik radova, Tome 2 (1977) no. 10, p. 99 . http://geodesic.mathdoc.fr/item/ZR_1977_2_10_a7/