On Modular Law for Ternary $GD$-Groupoids
Zbornik radova, Tome 1 (1976) no. 9, p. 53 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $X_1,X_2,X_3,X_4$ be four nonempty sets, and $A:X_1imes X_2imes X_3\rightarrow X_4$ then the ordered fivefold $(X_1,X_2,X_3,X_4;A)$ we call $G$-groupoid (generalized ternary groupoid).
@article{ZR_1976_1_9_a8,
     author = {Svetozar Mili\'c},
     title = {On {Modular} {Law} for {Ternary} $GD${-Groupoids}},
     journal = {Zbornik radova},
     pages = {53 },
     publisher = {mathdoc},
     volume = {1},
     number = {9},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a8/}
}
TY  - JOUR
AU  - Svetozar Milić
TI  - On Modular Law for Ternary $GD$-Groupoids
JO  - Zbornik radova
PY  - 1976
SP  - 53 
VL  - 1
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a8/
LA  - en
ID  - ZR_1976_1_9_a8
ER  - 
%0 Journal Article
%A Svetozar Milić
%T On Modular Law for Ternary $GD$-Groupoids
%J Zbornik radova
%D 1976
%P 53 
%V 1
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a8/
%G en
%F ZR_1976_1_9_a8
Svetozar Milić. On Modular Law for Ternary $GD$-Groupoids. Zbornik radova, Tome 1 (1976) no. 9, p. 53 . http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a8/