A Functional Equation with Differences
Zbornik radova, Tome 1 (1976) no. 9, p. 49
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $R$ denote the set of real number. Let us determine all functions $f:R\rightarrow R$ such that
$\frac{f(tx+ty(-f(tx)}{f(tx)-f(tx-ty)}=\frac{f(x+y)-f(x)}{f(x)-f(x-y)}$
for all $x,y,t\in R,\;\;yt\neq 0$. This problem is due to P. Drṟeve{a}gilṟeve{a} [1].
@article{ZR_1976_1_9_a7,
author = {Gyula Maksa},
title = {A {Functional} {Equation} with {Differences}},
journal = {Zbornik radova},
pages = {49 },
publisher = {mathdoc},
volume = {1},
number = {9},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a7/}
}
Gyula Maksa. A Functional Equation with Differences. Zbornik radova, Tome 1 (1976) no. 9, p. 49 . http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a7/