A Class of Balanced Laws on Quasigroups (I)
Zbornik radova, Tome 1 (1976) no. 9, p. 7
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $w_1=w_2$ be a balanced law of the I kind [2] in form
$A(u_1,...,u_m)=B(v_1,...,v_n)\;\;m\geq 2,\;\;n\geq 2$
where $u_i(i=1,...,m)$ is either a variable or a term $A_i(x_{i_1},...,x_{i_\alpha})$, $x_{i_1},...,x_{i_\alpha}$
being variables, analogously $v_j(j=1,...,n)$ is either a variable or a term
$B_j(x_{j_1},...,x_{j_\beta})$, $x_{j_1},...,x_{j_\beta}$ being variable. $A,\; B,\; A_i$ and $B_j$ are function letters.
@article{ZR_1976_1_9_a0,
author = {Branka P. Alimpi\'c},
title = {A {Class} of {Balanced} {Laws} on {Quasigroups} {(I)}},
journal = {Zbornik radova},
pages = {7 },
publisher = {mathdoc},
volume = {1},
number = {9},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a0/}
}
Branka P. Alimpić. A Class of Balanced Laws on Quasigroups (I). Zbornik radova, Tome 1 (1976) no. 9, p. 7 . http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a0/