@article{ZNSL_2024_540_a9,
author = {S. Muravyov and V. Kazakovtsev and I. Usov and P. Shpineva and O. Muravyova and A. Shalyto},
title = {An opensource library for {AutoML} multimodal clustering on {Apache} {Spark}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--193},
year = {2024},
volume = {540},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a9/}
}
TY - JOUR AU - S. Muravyov AU - V. Kazakovtsev AU - I. Usov AU - P. Shpineva AU - O. Muravyova AU - A. Shalyto TI - An opensource library for AutoML multimodal clustering on Apache Spark JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 178 EP - 193 VL - 540 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a9/ LA - en ID - ZNSL_2024_540_a9 ER -
%0 Journal Article %A S. Muravyov %A V. Kazakovtsev %A I. Usov %A P. Shpineva %A O. Muravyova %A A. Shalyto %T An opensource library for AutoML multimodal clustering on Apache Spark %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 178-193 %V 540 %U http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a9/ %G en %F ZNSL_2024_540_a9
S. Muravyov; V. Kazakovtsev; I. Usov; P. Shpineva; O. Muravyova; A. Shalyto. An opensource library for AutoML multimodal clustering on Apache Spark. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 178-193. http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a9/
[1] V. Shalamov, V. Efimova, S. Muravyov, and A. Filchenkov, “Reinforcement-based method for simultaneous clustering algorithm selection and its hyperparameters optimization”, Procedia Comput. Sci., 136 (2018), 144–153 | DOI
[2] V. Kazakovtsev and S. Muravyov, “Application of the automatic selection and configuration of clustering algorithms method for the Apache Spark framework”, ACM Int. Conf. Proc. Ser., 2021 | Zbl
[3] O. Taratukhin and S. Muravyov, “Meta-Learning Based Feature Selection for Clustering”, Lecture Notes in Comput. Sci., 13113, Springer, 2021, 548–559 | DOI
[4] N. Kulin and S. Muravyov, “A meta-feature selection method based on the auto-sklearn framework”, Sci. Tech. J. Inf. Technol. Mech. Opt., 21:5 (2021), 702–702
[5] A. Filchenkov, S. Muravyov, and V. Parfenov, “Towards cluster validity index evaluation and selection”, Proc. 2016 IEEE Artif. Intell. Nat. Lang. Conf. (AINL), IEEE, 2016, 1–8
[6] M.M. Al Rahhal, Y. Bazi, T. Abdullah, M.L. Mekhalfi, and M. Zuair, “Deep unsupervised embedding for remote sensing image retrieval using textual cues”, Appl. Sci., 10:24 (2020), 8931 | DOI
[7] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine learning: A survey and taxonomy”, IEEE Trans. Pattern Anal. Mach. Intell., 41:2 (2018), 423–443
[8] C. Chen, D. Han, and J. Wang, “Multimodal encoder-decoder attention networks for visual question answering”, IEEE Access, 8 (2020), 35662–35671 | DOI
[9] M. Suzuki and Y. Matsuo, A survey of multimodal deep generative models, 2022, arXiv: 2207.02127
[10] W. Wang, B.C. Ooi, X. Yang, D. Zhang, and Y. Zhuang, “Effective multi-modal retrieval based on stacked auto-encoders”, Proc. VLDB Endow., 7:8 (2014), 649–660 | DOI
[11] J. Vanschoren, J.N. van Rijn, B. Bischl, and L. Torgo, OpenML: Networked science in machine learning, 2014, arXiv: 1407.7722
[12] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation hyperparameter optimization framework”, Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min, 2019