@article{ZNSL_2024_540_a6,
author = {A. Lobanov and A. Gasnikov},
title = {Improved maximum noise level estimation in black-box optimization problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--147},
year = {2024},
volume = {540},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a6/}
}
A. Lobanov; A. Gasnikov. Improved maximum noise level estimation in black-box optimization problems. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 132-147. http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a6/
[1] A. Gasnikov, A. Novitskii, V. Novitskii, F. Abdukhakimov, D. Kamzolov, A. Beznosikov, M. Takac, P. Dvurechensky, and B. Gu, “The power of first-order smooth optimization for black-box non-smooth problems”, International Conference on Machine Learning, PMLR, 2022, 7241–7265
[2] A. Lobanov, B. Alashqar, D. Dvinskikh, and A. Gasnikov, Gradient-Free Federated Learning Methods with $ l_1 $ and $ l_2 $-Randomization for Non-Smooth Convex Stochastic Optimization Problems, 2022, arXiv: 2211.10783 | MR
[3] A.D. Flaxman, A.T. Kalai, and H.B. McMahan, “Online convex optimization in the bandit setting: gradient descent without a gradient”, Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2005, 385–394 | MR | Zbl
[4] P. Dvurechensky, E. Gorbunov, and A. Gasnikov, “An accelerated directional derivative method for smooth stochastic convex optimization”, Eur. J. Oper. Res., 290:2 (2021), 601–621 | DOI | MR | Zbl
[5] N. Kornilov, O. Shamir, A. Lobanov, D. Dvinskikh, A. Gasnikov, I. Shibaev, E. Gorbunov, and S. Horváth, Accelerated zeroth-order method for non-smooth stochastic convex optimization problem with infinite variance, Advances in Neural Information Processing Systems, 36, 2024
[6] A. Lobanov, “Stochastic adversarial noise in the “black box” optimization problem”, International Conference on Optimization and Applications, Springer, 2023, 60–71 | DOI | MR | Zbl
[7] I.A. Kuruzov, F.S. Stonyakin, and M.S. Alkousa, “Gradient-type methods for optimization problems with Polyak-Łojasiewicz condition: Early stopping and adaptivity to inexactness parameter”, International Conference on Optimization and Applications, Springer, 2022, 18–32 | MR | Zbl
[8] A. Lobanov, A. Gasnikov, and F. Stonyakin, Highly smoothness zero-order methods for solving optimization problems under PL condition, 2023, arXiv: 2305.15828 | MR
[9] S. Lojasiewicz, “Une propriété topologique des sous-ensembles analytiques réels”, Les équations aux dérivées partielles, 117, 1963, 87–89 | MR | Zbl
[10] B.T. Polyak, “Gradient methods for the minimisation of functionals”, USSR Comput. Math. Math. Phys., 3:4 (1963), 864–878 | DOI | MR | Zbl
[11] P. Yue, C. Fang, and Z. Lin, “On the lower bound of minimizing Polyak-Łojasiewicz functions”, The Thirty Sixth Annual Conference on Learning Theory, PMLR, 2023, 2948–2968
[12] R. Dang-Nhu, G. Singh, P. Bielik, and M. Vechev, “Adversarial attacks on probabilistic autoregressive forecasting models”, International Conference on Machine Learning, PMLR, 2020, 2356–2365
[13] H. Rosenbrock, “An automatic method for finding the greatest or least value of a function”, Comput. J., 3:3 (1960), 175–184 | DOI | MR
[14] C. Audet and W. Hare, Derivative-free and blackbox optimization, Springer, 2017 | MR | Zbl
[15] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z.B. Celik, and A. Swami, “Practical black-box attacks against machine learning”, Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, 2017, 506–519
[16] J. Gao, J. Lanchantin, M.L. Soffa, and Y. Qi, “Black-box generation of adversarial text sequences to evade deep learning classifiers”, 2018 IEEE Security and Privacy Workshops (SPW), 2018, 50–56 | DOI | Zbl
[17] H. Mania, A. Guy, and B. Recht, Simple random search of static linear policies is competitive for reinforcement learning, Advances in Neural Information Processing Systems, 31, 2018
[18] K.K. Patel, A. Saha, L. Wang, and N. Srebro, “Distributed Online and Bandit Convex Optimization”, OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022
[19] A. Akhavan, E. Chzhen, M. Pontil, and A. Tsybakov, “A gradient estimator via $L_1$-randomization for online zero-order optimization with two point feedback”, Advances in Neural Information Processing Systems, 35, 2022, 7685–7696 | MR
[20] O. Shamir, “An optimal algorithm for bandit and zero-order convex optimization with two-point feedback”, J. Mach. Learn. Res., 18:1 (2017), 1703–1713 | MR
[21] T. Lattimore and A. Gyorgy, “Improved regret for zeroth-order stochastic convex bandits”, Conference on Learning Theory, PMLR, 2021, 2938–2964
[22] A. Nguyen and K. Balasubramanian, “Stochastic Zeroth-Order Functional Constrained Optimization: Oracle Complexity and Applications”, INFORMS J. Optim., 2022 | MR
[23] A. Lobanov, A. Gasnikov, and A. Krasnov, The Order Oracle: A New Concept in The Black Box Optimization Problems, 2024, arXiv: 2402.09014 | MR
[24] A. Gasnikov, D. Dvinskikh, P. Dvurechensky, E. Gorbunov, A. Beznosikov, and A. Lobanov, Randomized gradient-free methods in convex optimization, 2022, arXiv: 2211.13566
[25] F. Bach and V. Perchet, “Highly-smooth zero-th order online optimization”, Conference on Learning Theory, PMLR, 2016, 257–283
[26] A. Akhavan, M. Pontil, and A. Tsybakov, “Exploiting higher order smoothness in derivative-free optimization and continuous bandits”, Advances in Neural Information Processing Systems, 33, 2020, 9017–9027
[27] A. Lobanov, N. Bashirov, and A. Gasnikov, The Black-Box Optimization Problem: Zero-Order Accelerated Stochastic Method via Kernel Approximation, 2023, arXiv: 2310.02371 | MR
[28] A. Lobanov and A. Gasnikov, “Accelerated zero-order SGD method for solving the black box optimization problem under “overparametrization” condition”, International Conference on Optimization and Applications, Springer, 2023, 72–83 | DOI | MR | Zbl
[29] A. Akhavan, M. Pontil, and A. Tsybakov, “Distributed zero-order optimization under adversarial noise”, Advances in Neural Information Processing Systems, 34, 2021, 10209–10220
[30] D. Dvinskikh, V. Tominin, I. Tominin, and A. Gasnikov, “Noisy zeroth-order optimization for non-smooth saddle point problems”, International Conference on Mathematical Optimization Theory and Operations Research, Springer, 2022, 18–33 | DOI | MR | Zbl
[31] A. Lobanov, A. Anikin, A. Gasnikov, A. Gornov, and S. Chukanov, “Zero-order stochastic conditional gradient sliding method for non-smooth convex optimization”, International Conference on Mathematical Optimization Theory and Operations Research, Springer, 2023, 92–106 | MR
[32] N. Kornilov, A. Gasnikov, P. Dvurechensky, and D. Dvinskikh, “Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact”, Comput. Manag. Sci., 20:1 (2023), 37 | DOI | MR | Zbl