Tiled physical adversarial patch for no-reference video quality metrics
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 113-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Objective no-reference image- and video-quality metrics are crucial in many computer vision tasks. However, state-of-the-art no-reference metrics have become learning-based and are vulnerable to adversarial attacks. The vulnerability of quality metrics imposes restrictions on using such metrics in quality control systems and comparing objective algorithms. Also, using vulnerable metrics as a loss for deep learning model training can mislead training to worsen visual quality. Because of that, quality metrics testing for vulnerability is a task of current interest. In this work we propose a new method for testing quality metrics vulnerability in the physical space. To our knowledge, quality metrics have not previously been tested for vulnerability to this attack; they were only tested in the pixel space. We applied a physical adversarial Ti-Patch (Tiled Patch) attack to quality metrics and did experiments both in pixel and physical space. We also performed experiments on the implementation of physical adversarial wallpaper. The proposed method can be used as additional quality metrics in vulnerability evaluation, complementing traditional subjective comparison and vulnerability tests in the pixel space. The code and adversarial videos for this work are available on GitHub: https://github.com/leonenkova/Ti-Patch.
@article{ZNSL_2024_540_a5,
     author = {V. Leonenkova and E. Shumitskaya and A. Antsiferova and D. Vatolin},
     title = {Tiled physical adversarial patch for no-reference video quality metrics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--131},
     year = {2024},
     volume = {540},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a5/}
}
TY  - JOUR
AU  - V. Leonenkova
AU  - E. Shumitskaya
AU  - A. Antsiferova
AU  - D. Vatolin
TI  - Tiled physical adversarial patch for no-reference video quality metrics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 113
EP  - 131
VL  - 540
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a5/
LA  - en
ID  - ZNSL_2024_540_a5
ER  - 
%0 Journal Article
%A V. Leonenkova
%A E. Shumitskaya
%A A. Antsiferova
%A D. Vatolin
%T Tiled physical adversarial patch for no-reference video quality metrics
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 113-131
%V 540
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a5/
%G en
%F ZNSL_2024_540_a5
V. Leonenkova; E. Shumitskaya; A. Antsiferova; D. Vatolin. Tiled physical adversarial patch for no-reference video quality metrics. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 113-131. http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a5/

[1] A. Antsiferova, K. Abud, A. Gushchin, S. Lavrushkin, E. Shumitskaya, M. Velikanov, and D. Vatolin, Comparing the robustness of modern no-reference image-and video-quality metrics to adversarial attacks, 2023, arXiv: 2310.06958

[2] A. Antsiferova, S. Lavrushkin, M. Smirnov, A. Gushchin, D. Vatolin, and D. Kulikov, “Video compression dataset and benchmark of learning-based video-quality metrics”, Adv. Neural Inf. Process. Syst., 35 (2022), 13814–13825

[3] A. Antsiferova, S. Lavrushkin, M. Smirnov, A. Gushchin, D. Vatolin, and D. Kulikov, “Video compression dataset and benchmark of learning-based video-quality metrics”, Advances in Neural Information Processing Systems, 35, eds. S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, 2022, 13814–13825

[4] T.B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, Adversarial patch, 2017, arXiv: 1712.09665

[5] A. Chindaudom, P. Siritanawan, K. Sumongkayothin, and K. Kotani, “AdversarialQR: An adversarial patch in QR code format”, 2020 Joint 9th International Conference on Informatics, Electronics Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision Pattern Recognition (icIVPR), IEEE, 2020, 1–6

[6] B.G. Doan, M. Xue, S. Ma, E. Abbasnejad, and D.C. Ranasinghe, “TNT attacks! Universal naturalistic adversarial patches against deep neural network systems”, IEEE Trans. Inf. Forensics Secur., 17 (2022), 3816–3830 | DOI

[7] I.J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial examples, 2014, arXiv: 1412.6572

[8] A. Kalyakulina, I. Yusipov, A. Moskalev, C. Franceschi, and M. Ivanchenko, “Explainable artificial intelligence (XAI) in aging clock models”, Ageing Res. Rev., 2023, 102144

[9] D. Karmon, D. Zoran, and Y. Goldberg, “Lavan: Localized and visible adversarial noise”, International Conference on Machine Learning, PMLR, 2018, 2507–2515

[10] M. Kettunen, E. Härkönen, and J. Lehtinen, E-LPIPS: Robust perceptual image similarity via random transformation ensembles, 2019, arXiv: 1906.03973

[11] S. Komkov and A. Petiushko, “AdvHat: Real-world adversarial attack on ArcFace face ID system”, 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, 2021, 819–826 | DOI

[12] J. Korhonen and J. You, “Adversarial attacks against blind image quality assessment models”, Proceedings of the 2nd Workshop on Quality of Experience in Visual Multimedia Applications, 2022, 3–11 | DOI

[13] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world”, Artificial Intelligence Safety and Security, Chapman and Hall/CRC, 2018, 99–112 | DOI

[14] M. Lee and Z. Kolter, On physical adversarial patches for object detection, 2019, arXiv: 1906.11897

[15] L. Li, T. Xie, and B. Li, “SoK: Certified robustness for deep neural networks”, 2023 IEEE Symposium on Security and Privacy (SP), IEEE, 2023, 1289–1310 | MR

[16] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C.L. Zitnick, “Microsoft COCO: Common objects in context”, Computer Vision–ECCV 2014: 13th European Conference, Proceedings (Zurich, Switzerland, September 6-12, 2014), v. V, Springer, 2014, 740–755 | DOI

[17] X. Liu, H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen, DPatch: An adversarial patch attack on object detectors, 2018, arXiv: 1806.02299

[18] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards deep learning models resistant to adversarial attacks, 2017, arXiv: 1706.06083

[19] A. Mahendran and A. Vedaldi, “Understanding deep image representations by inverting them”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 5188–5196

[20] H.F.B. Meftah, S.A. Fezza, W. Hamidouche, and O. Déforges, “Evaluating the vulnerability of deep learning-based image quality assessment methods to adversarial attacks”, 2023 11th European Workshop on Visual Information Processing (EUVIP), IEEE, 2023, 1–6

[21] A.S. Panfilova and D.Y. Turdakov, “Applying explainable artificial intelligence methods to models for diagnosing personal traits and cognitive abilities by social network data”, Sci. Rep., 14:1 (2024), 5369 | DOI

[22] M. Pautov, G. Melnikov, E. Kaziakhmedov, K. Kireev, and A. Petiushko, “On adversarial patches: Real-world attack on ArcFace-100 face recognition system”, 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), IEEE, 2019, 0391–0396

[23] Y. Ran, A.X. Zhang, M. Li, W. Tang, and Y.G. Wang, Black-box adversarial attacks against image quality assessment models, 2024, arXiv: 2402.17533

[24] Q. Sang, H. Zhang, L. Liu, X. Wu, and A.C. Bovik, “On the generation of adversarial examples for image quality assessment”, Vis. Comput., 2023, 1–16

[25] M. Sharif, S. Bhagavatula, L. Bauer, and M.K. Reiter, “Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition”, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, 1528–1540 | DOI

[26] E. Shumitskaya, A. Antsiferova, and D. Vatolin, “Towards adversarial robustness verification of no-reference image- and video-quality metrics”, Comput. Vis. Image Underst, 240 (2024), 103913 | DOI

[27] E. Shumitskaya, A. Antsiferova, and D.S. Vatolin, “Universal perturbation attack on differentiable no-reference image- and video-quality metrics”, 33rd British Machine Vision Conference 2022 (BMVC 2022) (London, UK, November 21-24), BMVA Press, 2022

[28] E. Shumitskaya, A. Antsiferova, and D.S. Vatolin, “Fast adversarial CNN-based perturbation attack on no-reference image- and video-quality metrics”, The First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023 (Kigali, Rwanda, May 5, 2023, OpenReview.net), 2023

[29] J. Su, D.V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks”, IEEE Trans. Evol. Comput., 23:5 (2019), 828–841 | DOI | MR

[30] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, Intriguing properties of neural networks, 2013, arXiv: 1312.6199

[31] X. Wang, X. He, J. Wang, and K. He, “Admix: Enhancing the transferability of adversarial attacks”, Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, 16158–16167

[32] W. Wu, Y. Su, M.R. Lyu, and I. King, “Improving the transferability of adversarial samples with adversarial transformations”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, 9024–9033

[33] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A.L. Yuille, “Improving transferability of adversarial examples with input diversity”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019

[34] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.Y. Chen, Y. Wang, and X. Lin, “Adversarial T-shirt! Evading person detectors in a physical world”, Computer Vision–ECCV 2020: 16th European Conference, Proceedings (Glasgow, UK, August 23-28, 2020), v. V, Springer, 2020, 665–681

[35] C. Yang, Y. Liu, D. Li, et al., Exploring vulnerabilities of no-reference image quality assessment models: A query-based black-box method, 2024, arXiv: 2401.05217

[36] B. Yin, W. Wang, T. Yao, J. Guo, Z. Kong, S. Ding, J. Li, and C. Liu, Adv-makeup: A new imperceptible and transferable attack on face recognition, 2021, arXiv: 2105.03162

[37] Z. Ying, H. Niu, P. Gupta, D. Mahajan, D. Ghadiyaram, and A. Bovik, “From patches to pictures (paq-2-piq): Mapping the perceptual space of picture quality”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 3575–3585

[38] A. Zhang, Y. Ran, W. Tang, and Y.G. Wang, “Vulnerabilities in video quality assessment models: The challenge of adversarial attacks”, Adv. Neural Inf. Process. Syst., 36 (2024)

[39] W. Zhang, D. Li, X. Min, G. Zhai, G. Guo, X. Yang, and K. Ma, “Perceptual attacks of no-reference image quality models with human-in-the-loop”, Advances in Neural Information Processing Systems, 35, 2022, 2916–2929