UnGAN: machine unlearning strategies through membership inference
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 46-60
Voir la notice de l'article provenant de la source Math-Net.Ru
As regulatory and ethical demands for data privacy and the right to be forgotten increase, the ability to effectively unlearn specific data points from machine learning models without retraining from scratch becomes paramount. Machine unlearning aims to efficiently eliminate the influence of certain data points on a model. We propose the UnGAN, a novel approach to machine unlearning that leverages Generative Adversarial Networks (GANs) to address the growing need for efficient and reliable data removal from trained models. UnGAN proposes a unique unlearning strategy through membership inference, where a discriminator network is trained to identify whether a given input was part of the model's training set. The discriminator is a three-layer fully connected network employing ReLU activation functions, receiving inputs from the output of the model undergoing unlearning and the class label. This architecture enables the discriminator to learn the membership status of data points with high precision, thereby guiding the unlearning process.
@article{ZNSL_2024_540_a2,
author = {A. Zhavoronkin and M. Pautov and N. Kalmykov and E. Sevriugov and D. Kovalev and O. Y. Rogov and I. Oseledets},
title = {UnGAN: machine unlearning strategies through membership inference},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {46--60},
publisher = {mathdoc},
volume = {540},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a2/}
}
TY - JOUR AU - A. Zhavoronkin AU - M. Pautov AU - N. Kalmykov AU - E. Sevriugov AU - D. Kovalev AU - O. Y. Rogov AU - I. Oseledets TI - UnGAN: machine unlearning strategies through membership inference JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 46 EP - 60 VL - 540 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a2/ LA - en ID - ZNSL_2024_540_a2 ER -
%0 Journal Article %A A. Zhavoronkin %A M. Pautov %A N. Kalmykov %A E. Sevriugov %A D. Kovalev %A O. Y. Rogov %A I. Oseledets %T UnGAN: machine unlearning strategies through membership inference %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 46-60 %V 540 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a2/ %G en %F ZNSL_2024_540_a2
A. Zhavoronkin; M. Pautov; N. Kalmykov; E. Sevriugov; D. Kovalev; O. Y. Rogov; I. Oseledets. UnGAN: machine unlearning strategies through membership inference. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 46-60. http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a2/