@article{ZNSL_2024_540_a2,
author = {A. Zhavoronkin and M. Pautov and N. Kalmykov and E. Sevriugov and D. Kovalev and O. Y. Rogov and I. Oseledets},
title = {UnGAN: machine unlearning strategies through membership inference},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {46--60},
year = {2024},
volume = {540},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a2/}
}
TY - JOUR AU - A. Zhavoronkin AU - M. Pautov AU - N. Kalmykov AU - E. Sevriugov AU - D. Kovalev AU - O. Y. Rogov AU - I. Oseledets TI - UnGAN: machine unlearning strategies through membership inference JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 46 EP - 60 VL - 540 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a2/ LA - en ID - ZNSL_2024_540_a2 ER -
%0 Journal Article %A A. Zhavoronkin %A M. Pautov %A N. Kalmykov %A E. Sevriugov %A D. Kovalev %A O. Y. Rogov %A I. Oseledets %T UnGAN: machine unlearning strategies through membership inference %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 46-60 %V 540 %U http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a2/ %G en %F ZNSL_2024_540_a2
A. Zhavoronkin; M. Pautov; N. Kalmykov; E. Sevriugov; D. Kovalev; O. Y. Rogov; I. Oseledets. UnGAN: machine unlearning strategies through membership inference. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 46-60. http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a2/
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need”, Advances in Neural Information Processing Systems, 30, 2017
[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, 9th International Conference on Learning Representations, ICLR, 2021
[3] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, and Others, GPT-4 Technical Report, 2023, arXiv: 2303.08774
[4] J. Lin, R. Men, A. Yang, C. Zhou, M. Ding, Y. Zhang, P. Wang, A. Wang, L. Jiang, X. Jia, and Others, M6: A Chinese Multimodal Pretrainer, 2021, arXiv: 2103.00823
[5] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against machine learning models”, 2017 IEEE Symposium on Security and Privacy (SP), 2017, 3–18
[6] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference attacks from first principles”, 2022 IEEE Symposium on Security and Privacy (SP), 2022, 1897–1914
[7] T. Nguyen, T. Huynh, P. Nguyen, A. Liew, H. Yin, and Q. Nguyen, A survey of machine unlearning, 2022, arXiv: 2209.02299
[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, and Y. Bengio, “Generative adversarial networks”, Communications of the ACM, 63:11 (2020), 139–144 | DOI
[9] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks”, International Conference on Machine Learning, 2017, 214–223 | MR
[10] A. Ginart, M. Guan, G. Valiant, and J. Zou, “Making AI Forget You: Data Deletion in Machine Learning”, Advances in Neural Information Processing Systems, 2019, 3513–3526
[11] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified Data Removal from Machine Learning Models”, International Conference on Machine Learning, 2020, 3832–3842
[12] T. Baumhauer, P. Schöttle, and M. Zeppelzauer, “Machine Unlearning: Linear Filtration for Logit-Based Classifiers”, Mach. Learn, 111 (2022), 3203–3226 | DOI | MR | Zbl
[13] Z. Izzo, M. Smart, K. Chaudhuri, and J. Zou, “Approximate Data Deletion from Machine Learning Models”, International Conference on Artificial Intelligence and Statistics, 2021, 2008–2016
[14] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-Delete: Gradient-Based Methods for Machine Unlearning”, Algorithmic Learning Theory, 2021, 931–962 | MR
[15] Q. Nguyen, B. Low, and P. Jaillet, “Variational Bayesian Unlearning”, Advances in Neural Information Processing Systems, 33, 2020
[16] Y. Wu, E. Dobriban, and S. Davidson, “DeltaGrad: Rapid Retraining of Machine Learning Models”, International Conference on Machine Learning, 2020, 10355–10366
[17] L. Bourtoule, V. Chandrasekaran, C. Choquette-Choo, H. Jia, A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine Unlearning”, 2021 IEEE Symposium on Security and Privacy (SP), 2021, 141–159
[18] B. Mirzasoleiman, A. Karbasi, and A. Krause, “Deletion-Robust Submodular Maximization: Data Summarization with "The Right to Be Forgotten”, International Conference on Machine Learning, 2017, 2449–2458
[19] Y. Cao and J. Yang, “Towards Making Systems Forget with Machine Unlearning”, 2015 IEEE Symposium on Security and Privacy, 2015, 463–480
[20] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Master's Thesis, University of Toronto, 2009
[21] J. Brophy and D. Lowd, “Machine Unlearning for Random Forests”, International Conference on Machine Learning, 2021, 1092–1104
[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770–778
[23] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites, “Adaptive Machine Unlearning”, Advances in Neural Information Processing Systems, 34, 2021
[24] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. Yu, and X. Zhang, “Membership Inference Attacks on Machine Learning: A Survey”, ACM Comput. Surv., 54 (2022), 1–37
[25] M. Bertran, S. Tang, A. Roth, M. Kearns, J. Morgenstern, and S. Wu, “Scalable Membership Inference Attacks via Quantile Regression”, Advances in Neural Information Processing Systems, 36, 2024
[26] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou, “White-Box vs Black-Box: Bayes Optimal Strategies for Membership Inference”, International Conference on Machine Learning, 2019, 5558–5567
[27] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes, ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models, 2018, arXiv: 1806.01246
[28] L. Song and P. Mittal, “Systematic Evaluation of Privacy Risks of Machine Learning Models”, 30th USENIX Security Symposium (USENIX Security 21), 2021, 2615–2632
[29] J. Neyman and E. Pearson, “IX. On the Problem of the Most Efficient Tests of Statistical Hypotheses”, Philosophical Transactions of the Royal Society of London. Series A, 231, Containing Papers of a Mathematical or Physical Character (1933), 289–337 | DOI | Zbl
[30] H. Thanh-Tung and T. Tran, “Catastrophic Forgetting and Mode Collapse in GANs”, 2020 International Joint Conference on Neural Networks (IJCNN), 2020, 1–10
[31] M. Mirza and S. Osindero, Conditional Generative Adversarial Nets, 2014, arXiv: 1411.1784
[32] A. Ben-Israel, “The Change-of-Variables Formula Using Matrix Volume”, SIAM J. Matrix Anal. Appl., 21 (1999) | DOI | MR | Zbl
[33] A. Tarun, V. Chundawat, M. Mandal, and M. Kankanhalli, “Fast Yet Effective Machine Unlearning”, IEEE Trans. Neural Netw. Learn. Syst., 2024, 1–10
[34] M. Kurmanji, P. Triantafillou, J. Hayes, and E. Triantafillou, “Towards Unbounded Machine Unlearning”, Advances in Neural Information Processing Systems, 36, 2024
[35] M. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, and R. Munos, The Cramer Distance as a Solution to Biased Wasserstein Gradients, 2017, arXiv: 1705.10743 | Zbl