@article{ZNSL_2024_540_a15,
author = {V. A. Garanin and K. K. Semenov},
title = {Nonparametric methods for solving the data reconciliation problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {351--405},
year = {2024},
volume = {540},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a15/}
}
V. A. Garanin; K. K. Semenov. Nonparametric methods for solving the data reconciliation problem. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 351-405. http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a15/
[1] M. J. Leibman, T. F. Edgar, L. S. Lasdon, “Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques”, Computers chemical engineering, 16:10–11 (1992), 963-986 | DOI
[2] K. K. Semenov, G. N. Solopchenko, “Theoretical prerequisites for implementation of metrological self-tracking of measurement data analysis programs”, Measurement Techniques, 53:6 (2010), 592–599 | DOI
[3] K. K. Semenov, G. N. Solopchenko, “Combined method of metrological self-tracking of measurement data processing programs general problems of metrology and measurement technique”, Measurement Techniques, 54:4 (2011), 378–386 | DOI
[4] K. K. Semenov, Metrologicheskoe avtosoprovozhdenie programm vychislenii v informatsionno-izmeritelnykh sistemakh, Dissertatsiya na soiskanie uchenoi stepeni kandidata tekhnicheskikh nauk po spetsialnosti 05.11.16. Informatsionno-izmeritelnye i upravlyayuschie sistemy, Sankt-Peterburg, 2011
[5] D. R. Kuehn, H. Davidson, “Computer control”, Chem. Engng. Prog., 57 (1961), 44–47
[6] V. Vaclavek, “Studies on system engineering. II. On the application of the calculus of observations in calculations of chemical engineering balances”, Collection of Czechoslovak Chemical Communications, 34:2 (1969), 364–372 | DOI
[7] V. Vaclavek, M. Loučka, “Selection of measurements necessary to achieve multicomponent mass balances in chemical plant”, Chemical Engineering Science, 31:12 (1976), 1199–1205 | DOI
[8] R. L. Wiegel, “Advances in mineral processing material balances”, Canadian Metallurgical Quarterly, 11:2 (1972), 413–424 | DOI
[9] D. Hodouin, M. D. Everell, “A hierarchical procedure for adjustment and material balancing of mineral processes data”, International Journal of Mineral Processing, 7:2 (1980), 91–116 | DOI
[10] D. E. Simpson, V. R. Voller, M. G. Everett, “An efficient algorithm for mineral processing data adjustment”, International Journal of Mineral Processing, 31:1-2 (1991), 73–96 | DOI
[11] N. Heraud, D. Maquin, J. Ragot, “Multilinear balance equilibration: Application to a complex metallurgical process”, Mining, Metallurgy Exploration, 8:4 (1991), 197–204 | DOI
[12] K. J. Reid, et al., “A Survey of Material Balance Computer Packages in the Mineral Processing Industry”, Application of Computers and Operations Research in the Mineral Industry, Soc. of Min. Eng. of AIME, 1982, 41–62
[13] R. S. Mah, G. M. Stanley, D. M. Downing, “Reconcillation and rectification of process flow and inventory data”, Industrial Engineering Chemistry Process Design and Development, 15:1 (1976), 175–183 | DOI
[14] C. M. Crowe, Y. A. G. Campos, A. Hrymak, “Reconciliation of process flow rates by matrix projection. Part I: linear case”, AIChE Journal, 29:6 (1983), 881–888 | DOI
[15] C. L. E. Swartz, “Data reconciliation for generalized flowsheet applications”, The American chemical society Journal, 197 (1989), 58–64
[16] M. Sanchez, J. Romagnoli, “Use of orthogonal transformations in data classification-reconciliation”, Computers chemical engineering, 20:5 (1996), 483–493 | DOI
[17] D. L. Ripps, “Adjustment of experimental data”, Chem. Eng. Prog. Symp. Ser., 61:8 (1965), 8–13
[18] P. M. Reilly, R. E. Carpani, “Application of statistical theory of adjustment to material balances”, 13th Canadian Chemical Engineering Congress (Montreal, Quebec), 1963
[19] G. A. Almasy, T. Sztano, “Checking and Correction of Measurements on the Basis of Linear System Model”, Prob. Control Inform. Theory, 4 (1975), 57–69 | MR | Zbl
[20] S. Narasimhan, R.S.H. Mah, “Generalized Likelihood Ratio Method for Gross Error Identification”, AIChE Journal, 33 (1987), 1514–1521 | DOI | MR
[21] A. C. Tamhane, C. Jordache, R.S.H. Mah, “A Bayesian Approach to Gross Error Detection in Chemical Process Data. Part I: Model Development”, Chemometrics and Intel. Lab. Sys., 4 (1988), 33–45 | DOI
[22] H. Tong, C. M. Crowe, “Detection of Gross Errors in Data Reconciliation by Principal Component Analysis”, AIChE Journal, 41 (1995), 1712–1722 | DOI | MR
[23] J. A. Romagnoli, G. Stephanopoulos, “Rectification of Process Measurement Data in the Presence of Gross Errors”, Chem. Eng. Sci., 36 (1981), 1849–1863 | DOI
[24] R. W. Serth, W. A. Heenan, “Gross Error Detecting and Data Reconciliation in Steam-Metering Systems”, AIChE Journal, 30 (1986), 743–747
[25] J. Rosenberg, R. S. H. Mah, C. Jordache, “Evaluation of Schemes for Detecting and Identification of Gross Errors in Process Data”, Ind. Eng. Chem. Proc. Des. Dev, 26 (1987), 555–564
[26] C. Jordache, R. S. H. Mah, A. C. Tamhane, “Performance Studies of the Measurement Test for Detecting of Gross Error in Process Data”, AIChE Journal, 31 (1985), 1187–1201 | DOI
[27] D. K. Rollins, J. F. Davis, “Unbiased Estimation Technique for Identification of Gross Errors”, AIChE Journal, 38 (1992), 563–571 | DOI
[28] V. Hlavacek, “Analysis of a Complex Plant–Steady State and Transient Behavior I-Plant Data Estimation and Adjustment”, Computers Chem. Engng., 1 (1977), 75–81 | DOI
[29] R. S. H. Mah, “Design and Analysis of Performance Monitoring Systems”, Chemical Process Control II, Engineering Foundation, New York, 1982
[30] A. C. Tamhane, R. S. H. Mah, “Data Reconciliation and Gross Error Detection in Chemical Process Networks”, Technometrics, 27 (1985), 409–422 | DOI
[31] R. S. H. Mah, “Data Screening”, Foundations of Computer-Aided Process Operations, CACHE/Elsevier, Amsterdam, 1987, 67–94
[32] C. M. Crowe, “Data Reconciliation Progress and Challenges”, J. Proc. Cont, 6 (1996), 89–98 | DOI
[33] R. S. H. Mah, Chemical Process Structures, and Information Flows, Butterworths, Boston, 1990
[34] C. E. Bodington, Planning, Scheduling and Control Integration in Process Industries, McGraw-Hill, New York, 1995
[35] F. Madron, Process Plant Performance: Measurement and Data Processing for Optimization and Retrofits, Ellis Horwood Limited Co, Chichester, West Sussex, England, 1992
[36] V. V. Veverka, F. Madron, Material and Energy Balancing in Process Industries: From Microscopic Balances to Large Plants, Elsevier, Amsterdam, Netherlands, 1997
[37] J. C. Knepper, J. W. Gorman, “Statistical Analysis of Constrained Data Sets”, AIChE Journal, 26 (1980), 260–264 | DOI | MR
[38] H. I. Britt, R. H. Luecke, “The Estimation of Parameters in Nonlinear Implicit Models”, Technometrics, 15 (1973), 233–247 | DOI | Zbl
[39] A. Ruszczyński, “A linearization method for nonsmooth stochastic programming problems”, Mathematics of Operations Research, 12:1 (1987), 32–49 | DOI | MR | Zbl
[40] C. M. Crowe, “Reconciliation of process flow rates by matrix projection. Part II: The nonlinear case”, AIChE Journal, 32:4 (1986), 616–623 | DOI
[41] I. B. Tjoa, L. T. Biegler, “Simultaneous Strategies for Data Reconciliation and Gross Error Detection of Nonlinear Systems”, Computers Chem. Engng., 15 (1991), 679–690 | DOI
[42] V. Ravikumar, S. R. Singh, M. O. Garg, S. Narasimhan, “RAGEmA Software Tool for Data Reconciliation and Gross Error Detection”, Foundations of Computer-Aided Process Operations, CACHE/Elsevier, Amsterdam, 1994, 429–436
[43] C. De Mulder, et al., “An open software package for data reconciliation and gap filling in preparation of Water and Resource Recovery Facility Modeling”, Environmental Modelling Software, 107 (2018), 186–198 | DOI
[44] A. Farzi, A. Mehrabani-Zeinabad, R. B. Boozarjomehry, “Data reconciliation: Development of an object-oriented software tool”, Korean Journal of Chemical Engineering, 25:5 (2008), 955–965 | DOI
[45] H. L. Lam, et al., “Software tools overview: process integration, modelling and optimisation for energy saving and pollution reduction”, Asia-Pacific Journal of Chemical Engineering, 6:5 (2011), 696–712 | DOI
[46] F. Manenti, et al., “Adaptive data reconciliation coupling C++ and PRO/II and on-line application by the field”, Computer Aided Chemical Engineering, 28 (2010), 373–378 | DOI
[47] G. Buzzi-Ferraris, F. Manenti, “BzzMath: Library overview and recent advances in numerical methods”, Computer Aided Chemical Engineering, 30 (2012), 1312–1316 | DOI
[48] O. Cencic, “Nonlinear data reconciliation in material flow analysis with software STAN”, Sustainable Environment Research, 26:6 (2016), 291–298 | DOI
[49] T. Jiang, et al., “Strategy for improving data quality for a Kraft pulp mill recausticizing plant”, FOCAPO 2003: Proceedings Foundations Of Computer Aided Process Operations, 2003, 467–470
[50] J. Y. Yong, et al., “Data reconciliation for energy system flowsheets”, Computer Aided Chemical Engineering, 38 (2016), 2277–2282 | DOI
[51] M. M. Camara, et al., “Numerical aspects of data reconciliation in industrial applications”, Processes, 5:4 (2017), 56 | DOI
[52] G. M. Stanley, R. S. H. Mah, “Estimation of Flows and Temperatures in Process Networks”, AIChE Journal, 23 (1977), 642–650 | DOI
[53] S. Narasimhan, C. Jordache, Data reconciliation and gross error detection: An intelligent use of process data, Elsevier, 1999
[54] Y. Ramamurthi, P. B. Sistu, B. W. Bequette, “Control Relevant Dynamic Data Reconciliation and Parameter Estimation”, Computers Chem. Engng., 17:1 (1993), 41–59 | DOI
[55] I. W. Kim, M. J. Liebman, T. F. Edgar, “Robust Error in Variables Estimation using Nonlinear Programming Techniques”, AIChE Journal., 36 (1990), 985-993 | DOI
[56] I. W. Kim, M. J. Liebman, T. F. Edgar, “A Sequential Error in Variables Estimation Method for Nonlinear Dynamic Systems”, Computers Chem. Engng., 15 (1991), 663–670 | DOI
[57] F. Allgöwer, et al., “Nonlinear predictive control and moving horizon estimation-an introductory overview”, Advances in control. Highlights of ECC'99, 1999, 391–449
[58] W. R. Esposito, C. A. Floudas, “Global optimization for the parameter estimation of differential-algebraic systems”, Industrial Engineering Chemistry Research, 39:5 (2000), 1291–1310 | DOI | MR
[59] C. V. Rao, J. B. Rawlings, D. Q. Mayne, “Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations”, IEEE transactions on automatic control, 48:2 (2003), 246–258 | DOI | MR | Zbl
[60] D. B. Özyurt, R. W. Pike, “Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes”, Computers Chemical Engineering, 28:3 (2004), 381–402 | DOI
[61] D. M. Prata, et al., “Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor”, Chemical Engineering Science, 64:18 (2009), 3953–3967 | DOI
[62] C. E. Llanos, M. C. Sanchez, R. A. Maronna, “Robust estimators for data reconciliation”, Industrial Engineering Chemistry Research, 54:18 (2015), 5096–5105 | DOI
[63] P. Groeneboom, G. Jongbloed, Nonparametric estimation under shape constraints., Cambridge Series in Statistical and Probabilistic Mathematics, 38, Cambridge University Press, 2014 | MR | Zbl
[64] J. L. Horowitz, S. Lee, “Nonparametric estimation and inference under shape restrictions”, Journal of Econometrics, 201:1 (2017), 108–126 | DOI | MR | Zbl
[65] K. Shariatmadar, M. Versteyhe, “Linear programming under p-box uncertainty model”, 7th International Conference on Control, Mechatronics and Automation, 2019, 84–89
[66] M. Bagajewicz, “Data reconciliation and instrumentation upgrade. Overview and challenges”, FOCAPO (Coral Springs, FL, USA), Foundations of Computer Aided Process Operations, 372, 2003
[67] M. Bagajewicz, M. Markowski, “Instrumentation design and upgrade using an unconstrained method with pure economical objectives”, Proceedings of FOCAPO, 2003
[68] M. Gala, M. J. Bagajewicz, “Rigorous methodology for the design and upgrade of sensor networks using cutsets”, Industrial Engineering Chemistry Research, 45:20 (2006), 6679–6686 | DOI
[69] P. R. Kotecha, M. Bhushan, R. D. Gudi, “Multi-objective optimization based robust sensor network design”, IFAC Proceedings Volumes, 43:5 (2010), 79–84 | DOI
[70] L. K. Reznik, G. N. Solopchenko, “Use of priori information on functional relations between measured quantities for improving accuracy of measurement”, Measurement, 3:3 (1985), 98–106 | DOI
[71] C. C. D. Pai, G. Fisher, “Application of Broyden's Method to Reconciliation of Nonlinearly Constrained Data”, AIChE Journal, 34:5 (1988), 873–876 | DOI
[72] S. J. Julier, J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems”, Signal processing, sensor fusion, and target recognition VI, Proc. SPIE, 3068, International Society for Optics and Photonics, 1997, 182–193 | DOI
[73] D. Wang, J. A. Romagnoli, “Robust data reconciliation based on a generalized objective function”, IFAC Proceedings Volumes, 35:1 (2002), 191–196
[74] F. R. Hampel, et al., Robust statistics: the approach based on influence functions, Wiley-Interscience, New York, 1986 | MR | Zbl
[75] V. A. Garanin, K. K. Semenov, “Semi-nonparametric approach for measured data reconciliation based on the Gram-Charlier series expansion”, Measurement: Sensors, 18 (2021), 100351 | DOI
[76] V. A. Garanin, K. K. Semenov, “Increasing measurement accuracy by nonparametric data reconciliation”, Measurement, 238 (2024), 115235 | DOI
[77] V. A. Garanin, K. K. Semenov, “Measured data reconciliation processed within nonlinear constraints models in cyber-physical systems”, Lecture Notes in Networks and Systems, 460, 2023, 78–95 | DOI
[78] V. A. Garanin, K. K. Semenov, “Estimating the accuracy increase during the measuring two quantities with linear dependence”, Lecture Notes in Networks and Systems, 95, 2020, 235–246 | DOI
[79] J. E. Kolassa, Series approximation methods in statistics, Lecture Notes in Statistics, 88, Springer Science Business Media, 2006 | MR | Zbl
[80] T. Jaki, R. W. West, “Maximum kernel likelihood estimation”, Journal of Computational and Graphical Statistics, 17:4 (2008), 976–993 | DOI | MR
[81] A. A. Efremov, V. N. Kozlov, “Metod sinteza lokalno dopustimykh ogranichennykh upravlenii dlya stabilizatsii programmnykh dvizhenii dinamicheskikh ob'ektov”, Informatsionno-upravlyayuschie sistemy, 2023, no. 4, 47–55
[82] A. A. Efremov, “Projection operator for solving generalized problems of program motions stabilization”, Informatika, telekommunikatsii i upravlenie, 16:4 (2023), 49–59