Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 27-45

Voir la notice de l'article provenant de la source Math-Net.Ru

Latest developments in natural language processing demonstrate remarkable progress in the code-text retrieval problem. As Transformer-based models used for this task continue to increase in size, the computational costs and time required for end-to-end fine-tuning become substantial. This poses a significant challenge for adapting and utilizing these models when computational resources are limited. Motivated by these concerns, we propose a fine-tuning framework that leverages parameter-efficient fine-tuning (PEFT) techniques. Moreover, we adopt contrastive learning objectives to improve the quality of bimodal representations learned by Transformer-based models. Additionally, for PEFT methods we provide extensive benchmarking, the lack of which has been highlighted as a crucial problem in the literature. Based on extensive experiments with the CodeT5+ model conducted on two datasets, we demonstrate that the proposed fine-tuning framework has the potential to improve code-text retrieval performance by tuning only 0.4% parameters at the most.
@article{ZNSL_2024_540_a1,
     author = {K. Galliamov and L. Khaertdinova and K. Denisova},
     title = {Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--45},
     publisher = {mathdoc},
     volume = {540},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a1/}
}
TY  - JOUR
AU  - K. Galliamov
AU  - L. Khaertdinova
AU  - K. Denisova
TI  - Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 27
EP  - 45
VL  - 540
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a1/
LA  - en
ID  - ZNSL_2024_540_a1
ER  - 
%0 Journal Article
%A K. Galliamov
%A L. Khaertdinova
%A K. Denisova
%T Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 27-45
%V 540
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a1/
%G en
%F ZNSL_2024_540_a1
K. Galliamov; L. Khaertdinova; K. Denisova. Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 27-45. http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a1/