Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 27-45
Voir la notice de l'article provenant de la source Math-Net.Ru
Latest developments in natural language processing demonstrate remarkable progress in the code-text retrieval problem. As Transformer-based models used for this task continue to increase in size, the computational costs and time required for end-to-end fine-tuning become substantial. This poses a significant challenge for adapting and utilizing these models when computational resources are limited. Motivated by these concerns, we propose a fine-tuning framework that leverages parameter-efficient fine-tuning (PEFT) techniques. Moreover, we adopt contrastive learning objectives to improve the quality of bimodal representations learned by Transformer-based models. Additionally, for PEFT methods we provide extensive benchmarking, the lack of which has been highlighted as a crucial problem in the literature. Based on extensive experiments with the CodeT5+ model conducted on two datasets, we demonstrate that the proposed fine-tuning framework has the potential to improve code-text retrieval performance by tuning only 0.4% parameters at the most.
@article{ZNSL_2024_540_a1,
author = {K. Galliamov and L. Khaertdinova and K. Denisova},
title = {Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--45},
publisher = {mathdoc},
volume = {540},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a1/}
}
TY - JOUR AU - K. Galliamov AU - L. Khaertdinova AU - K. Denisova TI - Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 27 EP - 45 VL - 540 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a1/ LA - en ID - ZNSL_2024_540_a1 ER -
%0 Journal Article %A K. Galliamov %A L. Khaertdinova %A K. Denisova %T Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 27-45 %V 540 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a1/ %G en %F ZNSL_2024_540_a1
K. Galliamov; L. Khaertdinova; K. Denisova. Refining joint text and source code embeddings for retrieval task with parameter-efficient fine-tuning. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part IV, Tome 540 (2024), pp. 27-45. http://geodesic.mathdoc.fr/item/ZNSL_2024_540_a1/