@article{ZNSL_2024_539_a8,
author = {S. M. Khryashchev},
title = {On representation by continued fractions of elements of some special algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {180--213},
year = {2024},
volume = {539},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a8/}
}
S. M. Khryashchev. On representation by continued fractions of elements of some special algebras. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 180-213. http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a8/
[1] A. Ya. Khinchin, Tsepnye drobi, Gos. izd. fiz.-mat. lit, M., 1961 | MR
[2] A. A. Bukhshtab, Teoriya chisel, Izd-vo Prosveschenie, M., 1966, 385 pp.
[3] S. Leng, Vvedenie v teoriyu diofantovykh priblizhenii, Mir, M., 1966 | MR
[4] S. G. Dani, Arnaldo Nogueira, “Continued fractions for complex numbers and values of binary quadratic forms”, Transactions of the American Mathematical Society, 366:7, 3553–3583 | DOI | MR | Zbl
[5] S. G. Dani, “Continued fraction expansions for complex numbers”, General Approach. Acta Arith., 171 (2015), 355–369 | DOI | MR | Zbl
[6] S. G. Dani, Ojas Sahasrabudhe, Generalized continued fraction expansions of complex numbers, and applications to quadratic and badly approximable numbers, 2021, arXiv: 2102.11769v1 [math. NT]
[7] V. I. Arnold, Tsepnye drobi, Izd-vo MTsNMO, M., 2009
[8] A. D. Bruno, “On generalizations of the continued fraction”, Preprinty of the Keldysh Institute of Applied Mathematics of RAS, 2004 | MR
[9] V. I. Parusnikov, “Chetyrekhmernoe obobschenie tsepnykh drobei”, Preprinty Instituta prikladnoi matematiki im. M. V. Keldysha RAN, 2011 | Zbl
[10] A. N. Korobov, “Mnogomernye tsepnye drobi i otsenki lineinykh form”, Acta Arithmetica, LXXI:4 (1995) | DOI | MR | Zbl
[11] A. A. Lodkin, “Parus Kleina i diofantovy priblizheniya vektora”, Zap. nauchn. semin. POMI, 481, 2019, 63–73
[12] Yusuf Hartono, Ergodic Properties of Continued Fraction Algorithms, DUP Science is an imprint of Delft University Press, Delft, The Netherlands, 2003 | MR
[13] S. M. Khryashchev, “On Finding Switching Instants for Control of Discrete-time Dynamical Polysystems by Using Continued Fractions”, Proceedings of 15th International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiys Conference), STAB 2020, 2020, 9140678 | DOI
[14] S. M. Khryashchev, “A Method of Determining of Switching Instants for Discrete-time Control Systems”, Stability and Control Processes, SCP 2020, Proceedings, Lecture Notes in Control and Information Sciences, Springer, Cham, 2020 | MR
[15] S. M. Khryashchev, “A Method of Finding Discrete Controls for Switched Dynamical Systems by Applying Continued Fractions”, Nonlinear Phenomena in Complex Systems, 24:2 (2021), 175–183 | DOI | Zbl
[16] S. M. Khryashchev, “On the Application of Multicomponent Continued Fractions to Control Problems for Dynamical Systems”, Proceedings of 16th International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiys Conference), STAB 2022, 2022, 9140678 | DOI
[17] S. M. Khryashchev, “On Multicomponent Continued Fraction Expansions of Hypernumbers of Certain Classes”, Proceedings of International Conference on Polynomial Computer Algebra, St. Petersburg, 2024, 71–75
[18] Leng S., Algebra, Mir, M., 1968
[19] B. L. van der Varden, Algebra, Lan, SPb., 2004 | MR
[20] N. G. Marchuk, Uravneniya teorii polya i algebry Klifforda, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.-Izhevsk, 2009