@article{ZNSL_2024_539_a6,
author = {S. Repin},
title = {Derivation of fully computable error bounds from a posteriori error identities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--156},
year = {2024},
volume = {539},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a6/}
}
S. Repin. Derivation of fully computable error bounds from a posteriori error identities. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 120-156. http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a6/
[1] M. Ainthworth, J. T. Oden, A posteriori error estimation in finite element analysis, Wiley, 2000 | MR
[2] D. E. Apushkinskaya, S. I. Repin, “Bigarmonicheskaya zadacha s prepyatstviem: garantirovannye i vychislyaemye otsenki oshibok dlya priblizhennykh reshenii”, Zh. vychisl. matem. i matem. fiz., 60:11 (2020), 1881–1897 | DOI | Zbl
[3] W. Bangerth, R. Rannacher, Adaptive finite element methods for differential equations, Birkhäuser, Berlin, 2003 | MR | Zbl
[4] S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, 15, third edition, Springer, New York, 2008 | DOI | MR | Zbl
[5] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, New York, 1991 | DOI | MR | Zbl
[6] C. Carstensen, S. Bartels, “Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I Low order conforming, non-conforming and mixed FEM”, Math. Comp., 71:239 (2002), 945–969 | DOI | MR | Zbl
[7] C. Carstensen, “A posteriori error estimate for the mixed finite element method”, Math. Comp., 66:218 (1997), 465–476 | DOI | MR | Zbl
[8] C. Carstensen, M. Feischl, M. Page, and D. Praetorius, “Axioms of adaptivity”, Comput. Math. Appl., 67 (2014), 1195–1253 | DOI | MR | Zbl
[9] P. Ciarlet, The finite element method for elliptic problems, North-Holland, 1987 | MR
[10] I. Babuška, T. Strouboulis, The finite element method and its reliability, Claderon Press, Oxford, 2001 | MR
[11] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976 | MR | Zbl
[12] S. G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press, Oxford, 1964 | Zbl
[13] L. A. Oganesyan, L. A. Rukhovets, “O variatsionno-raznostnykh skhemakh dlya lineinykh ellipticheskikh uravnenii vtorogo poryadka v dvumernoi oblasti s kusochno-gladkoi granitsei”, Zh. vychisl. matem. i matem. fiz., 8:1 (1968), 97–114 | Zbl
[14] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rat. Mech. Anal., 5 (1960), 286–292 | DOI | MR | Zbl
[15] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (2000), 481–500 | DOI | MR | Zbl
[16] S. Repin, “Two-sided estimates of deviations from exact solutions of uniformly elliptic equations”, Trudi St.Petersburg Math. Soc., 9 (2001), 148–179 | MR | Zbl
[17] S. Repin, “Estimates of deviations from exact solutions initial-boundary value problem for the heat equation”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13:2 (2002), 121–133 | MR | Zbl
[18] S. Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, 4, Walter de Gruyter GmbH Co. KG, Berlin, 2008 | MR
[19] S. I. Repin, S. A. Sauter, Accuracy of Mathematical Models. Dimension Reduction, Homogenization, and Simplification, EMS Tracts Math., 33, European Mathematical Society (EMS), Berlin, 2020 | DOI | MR | Zbl
[20] S. I. Repin, “Tozhdestvo dlya otklonenii ot tochnogo resheniya zadachi $\Lambda^*A\Lambda u~ +~\ell~ = ~0$ i ego sledstviya”, Zh. vychisl. matem. matem. fiz., 61:12 (2021), 1986–2009 | DOI | Zbl
[21] S. I. Repin, “Aposteriornye tozhdestva dlya mer otklonenii ot tochnykh reshenii nelineinykh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 63:6 (2023), 896–919 | DOI | Zbl
[22] S. Repin, “A posteriori error identities for parabolic convection-diffusion problems”, Zap. Nauchn. Semin. POMI, 519, 205–228 | MR
[23] S. I. Repin, “A posteriori error identities and estimates of modelling errors”, Adv. Appl. Mech., 58 (2024)
[24] S. Repin, J. Valdman, “Error identities for variational problems with obstacles”, ZAMM Z. Angew. Math. Mech., 98:4 (2018), 635–658 | DOI | MR | Zbl
[25] V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, 25, Springer, Berlin, 2006 | MR
[26] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques, Wiley, Teubner, New-York, 1996 | Zbl
[27] O.C. Zienkiewicz, J. Z. Zhu, “A simple error estimator and adaptive procedure for practical engineering analysis”, Int. J. Num. Meth. Engng., 24 (1987), 337–357 | DOI | MR | Zbl