Derivation of fully computable error bounds from a posteriori error identities
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 120-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A posteriori error identities are functional relations that control distances between the exact solution of a boundary value problem and any function from the respective energy space. They have been derived for many boundary value problems associated with partial differential equations of elliptic and parabolic types. A posteriori identities have a common structure: their left hand sides form certain error measures and the right hand ones consist of directly computable terms and a linear functional, which contains unknown error function. Fully computable estimates follow from such an identity provided that this functional is efficiently estimated. The difficulty that arises is due to the fact that computational simplicity and efficiency of such an estimate are contradictory requirements. A method suggested in the paper, largely overcomes this difficulty. It uses an auxiliary finite dimensional problem to estimate the linear functional containing unknown error function. The resulting estimates minimise possible overestimation of this term and imply sharp and fully computable majorants and minorants of errors.
@article{ZNSL_2024_539_a6,
     author = {S. Repin},
     title = {Derivation of fully computable error bounds from a posteriori error identities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--156},
     year = {2024},
     volume = {539},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a6/}
}
TY  - JOUR
AU  - S. Repin
TI  - Derivation of fully computable error bounds from a posteriori error identities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 120
EP  - 156
VL  - 539
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a6/
LA  - en
ID  - ZNSL_2024_539_a6
ER  - 
%0 Journal Article
%A S. Repin
%T Derivation of fully computable error bounds from a posteriori error identities
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 120-156
%V 539
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a6/
%G en
%F ZNSL_2024_539_a6
S. Repin. Derivation of fully computable error bounds from a posteriori error identities. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 120-156. http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a6/

[1] M. Ainthworth, J. T. Oden, A posteriori error estimation in finite element analysis, Wiley, 2000 | MR

[2] D. E. Apushkinskaya, S. I. Repin, “Bigarmonicheskaya zadacha s prepyatstviem: garantirovannye i vychislyaemye otsenki oshibok dlya priblizhennykh reshenii”, Zh. vychisl. matem. i matem. fiz., 60:11 (2020), 1881–1897 | DOI | Zbl

[3] W. Bangerth, R. Rannacher, Adaptive finite element methods for differential equations, Birkhäuser, Berlin, 2003 | MR | Zbl

[4] S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, 15, third edition, Springer, New York, 2008 | DOI | MR | Zbl

[5] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, New York, 1991 | DOI | MR | Zbl

[6] C. Carstensen, S. Bartels, “Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I Low order conforming, non-conforming and mixed FEM”, Math. Comp., 71:239 (2002), 945–969 | DOI | MR | Zbl

[7] C. Carstensen, “A posteriori error estimate for the mixed finite element method”, Math. Comp., 66:218 (1997), 465–476 | DOI | MR | Zbl

[8] C. Carstensen, M. Feischl, M. Page, and D. Praetorius, “Axioms of adaptivity”, Comput. Math. Appl., 67 (2014), 1195–1253 | DOI | MR | Zbl

[9] P. Ciarlet, The finite element method for elliptic problems, North-Holland, 1987 | MR

[10] I. Babuška, T. Strouboulis, The finite element method and its reliability, Claderon Press, Oxford, 2001 | MR

[11] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976 | MR | Zbl

[12] S. G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press, Oxford, 1964 | Zbl

[13] L. A. Oganesyan, L. A. Rukhovets, “O variatsionno-raznostnykh skhemakh dlya lineinykh ellipticheskikh uravnenii vtorogo poryadka v dvumernoi oblasti s kusochno-gladkoi granitsei”, Zh. vychisl. matem. i matem. fiz., 8:1 (1968), 97–114 | Zbl

[14] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rat. Mech. Anal., 5 (1960), 286–292 | DOI | MR | Zbl

[15] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (2000), 481–500 | DOI | MR | Zbl

[16] S. Repin, “Two-sided estimates of deviations from exact solutions of uniformly elliptic equations”, Trudi St.Petersburg Math. Soc., 9 (2001), 148–179 | MR | Zbl

[17] S. Repin, “Estimates of deviations from exact solutions initial-boundary value problem for the heat equation”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13:2 (2002), 121–133 | MR | Zbl

[18] S. Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, 4, Walter de Gruyter GmbH Co. KG, Berlin, 2008 | MR

[19] S. I. Repin, S. A. Sauter, Accuracy of Mathematical Models. Dimension Reduction, Homogenization, and Simplification, EMS Tracts Math., 33, European Mathematical Society (EMS), Berlin, 2020 | DOI | MR | Zbl

[20] S. I. Repin, “Tozhdestvo dlya otklonenii ot tochnogo resheniya zadachi $\Lambda^*A\Lambda u~ +~\ell~ = ~0$ i ego sledstviya”, Zh. vychisl. matem. matem. fiz., 61:12 (2021), 1986–2009 | DOI | Zbl

[21] S. I. Repin, “Aposteriornye tozhdestva dlya mer otklonenii ot tochnykh reshenii nelineinykh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 63:6 (2023), 896–919 | DOI | Zbl

[22] S. Repin, “A posteriori error identities for parabolic convection-diffusion problems”, Zap. Nauchn. Semin. POMI, 519, 205–228 | MR

[23] S. I. Repin, “A posteriori error identities and estimates of modelling errors”, Adv. Appl. Mech., 58 (2024)

[24] S. Repin, J. Valdman, “Error identities for variational problems with obstacles”, ZAMM Z. Angew. Math. Mech., 98:4 (2018), 635–658 | DOI | MR | Zbl

[25] V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, 25, Springer, Berlin, 2006 | MR

[26] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques, Wiley, Teubner, New-York, 1996 | Zbl

[27] O.C. Zienkiewicz, J. Z. Zhu, “A simple error estimator and adaptive procedure for practical engineering analysis”, Int. J. Num. Meth. Engng., 24 (1987), 337–357 | DOI | MR | Zbl