Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 44-65
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain sharp inequalities for the best mean square approximation of two classes of functions on the half-line, defined by boundary conditions corresponding to even and odd extension of a function. Optimal subspaces are provided by even and odd parts of the spaces generated by equidistant shifts of a single function. Under certain additional conditions on this function, the sharpness of the inequalities in the sense of average widths is proved.
@article{ZNSL_2024_539_a2,
author = {O. L. Vinogradov and A. Yu. Ulitskaya},
title = {Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {44--65},
publisher = {mathdoc},
volume = {539},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a2/}
}
TY - JOUR AU - O. L. Vinogradov AU - A. Yu. Ulitskaya TI - Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 44 EP - 65 VL - 539 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a2/ LA - ru ID - ZNSL_2024_539_a2 ER -
%0 Journal Article %A O. L. Vinogradov %A A. Yu. Ulitskaya %T Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 44-65 %V 539 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a2/ %G ru %F ZNSL_2024_539_a2
O. L. Vinogradov; A. Yu. Ulitskaya. Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 44-65. http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a2/