@article{ZNSL_2024_539_a2,
author = {O. L. Vinogradov and A. Yu. Ulitskaya},
title = {Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {44--65},
year = {2024},
volume = {539},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a2/}
}
TY - JOUR AU - O. L. Vinogradov AU - A. Yu. Ulitskaya TI - Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 44 EP - 65 VL - 539 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a2/ LA - ru ID - ZNSL_2024_539_a2 ER -
%0 Journal Article %A O. L. Vinogradov %A A. Yu. Ulitskaya %T Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 44-65 %V 539 %U http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a2/ %G ru %F ZNSL_2024_539_a2
O. L. Vinogradov; A. Yu. Ulitskaya. Optimal subspaces for mean square approximation of classes of differentiable functions on the half-line. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 44-65. http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a2/
[1] G. G. Magaril-Ilyaev, “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Mat. sbornik, 182:11 (1991), 1635–1656
[2] O. L. Vinogradov, A. Yu. Ulitskaya, “Tochnye otsenki srednekvadratichnykh priblizhenii klassov differentsiruemykh periodicheskikh funktsii prostranstvami sdvigov”, Vestnik SPbGU. Matematika. Mekhanika. Astronomiya, 5 (63):1 (2018), 22–31
[3] A. Yu. Ulitskaya, “Tochnye otsenki srednekvadratichnykh priblizhenii klassov svertok prostranstvami sdvigov na osi”, Sib. mat. zh., 64:1 (2023), 184–203 | MR | Zbl
[4] A. Kolmogorov, “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse”, Ann. Math., 37 (1936), 107–110 | DOI | MR | Zbl
[5] M. S. Floater, E. Sande, “Optimal spline spaces for $L^2$ $n$-width problems with boundary conditions”, Const. Approx., 2018, 1–18 | MR
[6] O. L. Vinogradov, A. Yu. Ulitskaya, “Optimalnye podprostranstva dlya srednekvadratichnykh priblizhenii klassov differentsiruemykh funktsii na otrezke”, Vestnik SPbGU. Matematika. Mekhanika. Astronomiya, 7 (65):3 (2020), 404–417 | MR | Zbl
[7] R.-Q. Jia, C. A. Micchelli, “Using the refinement equations for the construction of pre-wavelets II: powers of two”, Curves and Surfaces, eds. P.-J. Laurent, A. Le Mehaute, L. L. Schumaker, Academic Press, New York, 1991, 209–246 | DOI | MR
[8] A. Ron, “Introduction to shift-invariant spaces. Linear independence”, Multivariate approximation and applications, eds. N. Dyn et.al, Cambridge University Press, Cambridge, 2001, 112–151 | DOI | MR | Zbl
[9] C. de Boor, R. DeVore, A. Ron, “Approximation from shift-invariant subspaces of $L_2(\mathbb{R}^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806 | MR | Zbl
[10] B. Ya. Levin, Lectures on entire functions, AMS, Providence, Rhode Island, 1996 | MR | Zbl
[11] A. Yu. Ulitskaya, “Fourier analysis in spaces of shifts”, J. Math. Sci., 266:4 (2022), 603–614 | DOI | MR | Zbl
[12] O. L. Vinogradov, “Srednyaya razmernost prostranstv sdvigov i ikh podprostranstv”, Mat. zametki, 116:5 (2024), 694–706 | DOI
[13] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965
[14] M. Skopina, A. Krivoshein, V. Protasov, Multivariate wavelet frames, Springer, Singapore, 2016 | MR | Zbl
[15] O. L. Vinogradov, “Average dimension of shift spaces”, Lobachevskii J. Math., 39:5 (2018), 717–721 | DOI | MR | Zbl